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Chapter 5
Data Structures

Part IV:
Fibonacci Heaps, Algorithm Description
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Fibonacci Heaps
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Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Min-Heap Property:

Key of a node v < keys of all nodes in any sub-tree of v
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Fibonacci Heaps
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Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
« H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Lazy Merging:

* To reduce the number of trees, sometimes, trees need to be
merged

* Lazy merging: Do not merge as long as possible...
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Trees in Fibonacci Heaps

Structure of a single node v: /‘
parentl
g key rank ‘%
child/ mark
/

* v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)
 v.mark: will be used later...

Advantages of circular, doubly linked lists:
* Deleting an element takes constant time
* Concatenating two lists takes constant time
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Example
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Figure: Cormen et al., Introduction to Algorithms
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Simple (Lazy) Operations
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Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min
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Operation Delete-Min
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Delete the node with minimum key from H and return its element:
H.min

jp=ny)

if H.size > 0 then
remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm
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Rank and Maximum Degree
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Ranks of nodes, trees, heap:

Node v:
* rank(v): number of children of v (degree of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)
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Merging Two Trees
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Given: Heap-ordered trees T, T' with rank(T) = rank(T")

* Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T’

° Removes tree T’ from rOOt IiSt .................................
and adds T’ to child list of T ;i ;E

e rank(T) :=rank(T) + 1
 (T'.mark = false)

T
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Consolidate Example

link
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Consolidate Example
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Consolidate Example
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Consolidate Example

link
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Consolidate Example
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Consolidate Example
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Consolidation of Root List
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Array A pointing to find roots with the same rank:

0 1 2 D(n)
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Consolidate:
fori :== 0to D(n) do Ali] := null

Time:
O(|H.rootlist|+D(n))

while H.rootlist # null do
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)]
Alrank(T)] = null
T == link(T,T")
Alrank(T)] =T
Create new H.rootlist and H.min
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Operation Decrease-Key
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Decrease-Key(v, x): (decrease key of node v to new value x)

1. ifx = v.key then return

2. v.key = x;

3. update H.min to point to v if necessary

4. ifv € H.rootlist V x = v.parent. key then return

5. repeat e

6. parent := v.parent ew rmark %

7. H.cut(v) Ay cut

8. vV = parent cut

9. until =(v.mark) V v € H.rootlist keyy > x

10. if v € H.rootlist then v. mark := true cut
v: new key x
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Operation Cut(v)
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Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v &€ H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent = null;

A A T o

add v to H.rootlist; v.mark := false;

Algorithm Theory Fabian Kuhn 18



Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked
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Fibonacci Heaps Marks
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 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list
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Fibonacci Heap Marks
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History of a node v:

v is being linked to a node v.mark = false
a child of v is cut v.mark = true
a second child of v is cut H.cut(v);

v.mark = false

* Hence, the boolean value v.mark indicates whether node v has
lost a child since the last time v was made the child of another
node.

 Nodes v in the root list always have v.mark = false
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