"nr Algorithm Theory -

Chapter 5
Data Structures

Part IV:
Fibonacci Heaps, Algorithm Description

Fabian Kuhn

UNI

FREIBURG

Fibonacci Heaps

UNI
f

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Min-Heap Property:

Key of a node v < keys of all nodes in any sub-tree of v

(3)
&) (7) 5)
© /(1 ©
& @ @

Algorithm Theory Fabian Kuhn 2

Fibonacci Heaps

UNI

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
« H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Lazy Merging:

* To reduce the number of trees, sometimes, trees need to be
merged

* Lazy merging: Do not merge as long as possible...

Algorithm Theory Fabian Kuhn

Trees in Fibonacci Heaps

Structure of a single node v: /‘
parentl
g key rank ‘%
child/ mark
/

* v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)
 v.mark: will be used later...

Advantages of circular, doubly linked lists:
* Deleting an element takes constant time
* Concatenating two lists takes constant time

Algorithm Theory Fabian Kuhn 4

UNI
f

FREIBURG

Example

UNI

FREIBURG

Algorithm Theory

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory Fabian Kuhn

Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum key from H and return its element:
H.min

jp=ny)

if H.size > 0 then
remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory Fabian Kuhn 7

Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
* rank(v): number of children of v (degree of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory Fabian Kuhn

UNI

Merging Two Trees

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

* Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T’

° Removes tree T’ from rOOt IiSt
and adds T’ to child list of T ;i ;E

e rank(T) :=rank(T) + 1
 (T'.mark = false)

T

Algorithm Theory Fabian Kuhn 9

Consolidate Example

link

@ B B g ------ ----- &0 3

Algorithm Theory Fabian Kuhn

Consolidate Example

link

-------------------- TGO
2 @ ¥ @
5

Algorithm Theory Fabian Kuhn

Consolidate Example

Algorithm Theory Fabian Kuhn

12

Consolidate Example

link

Algorithm Theory Fabian Kuhn

13

Consolidate Example

Algorithm Theory Fabian Kuhn

14

Consolidate Example

Algorithm Theory Fabian Kuhn

15

Consolidation of Root List

UNI

Array A pointing to find roots with the same rank:

0 1 2 D(n)

FREIBURG

Consolidate:
fori :== 0to D(n) do Ali] := null

Time:
O(|H.rootlist|+D(n))

while H.rootlist # null do
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)]
Alrank(T)] = null
T == link(T,T")
Alrank(T)] =T
Create new H.rootlist and H.min

L 0 N O Uk WWDNRE

Algorithm Theory Fabian Kuhn 16

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

1. ifx = v.key then return

2. v.key = x;

3. update H.min to point to v if necessary

4. ifv € H.rootlist V x = v.parent. key then return

5. repeat e

6. parent := v.parent ew rmark %

7. H.cut(v) Ay cut

8. vV = parent cut

9. until =(v.mark) V v € H.rootlist keyy > x

10. if v € H.rootlist then v. mark := true cut
v: new key x

Algorithm Theory Fabian Kuhn 17

UNI

Operation Cut(v)

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v &€ H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent = null;

A A T o

add v to H.rootlist; v.mark := false;

Algorithm Theory Fabian Kuhn 18

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory Fabian Kuhn

19

UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory Fabian Kuhn 20

Fibonacci Heap Marks

|
FRE:BURG

UNI

History of a node v:

v is being linked to a node v.mark = false
a child of v is cut v.mark = true
a second child of v is cut H.cut(v);

v.mark = false

* Hence, the boolean value v.mark indicates whether node v has
lost a child since the last time v was made the child of another
node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory Fabian Kuhn 21

