
Algorithm Theory

Chapter 5

Data Structures

Part IV:
Fibonacci Heaps, Algorithm Description

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Fibonacci Heaps

Structure:

A Fibonacci heap 𝐻 consists of a collection of trees satisfying the
min-heap property.

Min-Heap Property:

Key of a node 𝑣 ≤ keys of all nodes in any sub-tree of 𝑣

3

8 7 5

9 7 15

8 7 12

Algorithm Theory Fabian Kuhn 3

Fibonacci Heaps

Structure:

A Fibonacci heap 𝐻 consists of a collection of trees satisfying the
min-heap property.

Variables:

• 𝐻.𝑚𝑖𝑛: root of the tree containing the (a) minimum key

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡: circular, doubly linked, unordered list containing
the roots of all trees

• 𝐻. 𝑠𝑖𝑧𝑒: number of nodes currently in 𝐻

Lazy Merging:

• To reduce the number of trees, sometimes, trees need to be
merged

• Lazy merging: Do not merge as long as possible...

Algorithm Theory Fabian Kuhn 4

Trees in Fibonacci Heaps

Structure of a single node 𝒗:

• 𝑣. 𝑐ℎ𝑖𝑙𝑑: points to circular, doubly linked and unordered list of
the children of 𝑣

• 𝑣. 𝑙𝑒𝑓𝑡, 𝑣. 𝑟𝑖𝑔ℎ𝑡: pointers to siblings (in doubly linked list)

• 𝑣.𝑚𝑎𝑟𝑘: will be used later…

Advantages of circular, doubly linked lists:

• Deleting an element takes constant time

• Concatenating two lists takes constant time

le
ft

parent

rig
h

tkey rank

child mark

Algorithm Theory Fabian Kuhn 5

Example

Figure: Cormen et al., Introduction to Algorithms

Algorithm Theory Fabian Kuhn 6

Simple (Lazy) Operations

Initialize-Heap 𝐻:

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≔ 𝐻.𝑚𝑖𝑛 ≔ 𝑛𝑢𝑙𝑙

Merge heaps 𝐻 and 𝐻′:

• concatenate root lists

• update 𝐻.𝑚𝑖𝑛

Insert element 𝑒 into 𝐻:

• create new one-node tree containing 𝑒 H′
– mark of root node is set to 𝐟𝐚𝐥𝐬𝐞

• merge heaps 𝐻 and 𝐻′

Get minimum element of 𝐻:

• return 𝐻.𝑚𝑖𝑛

Algorithm Theory Fabian Kuhn 7

Operation Delete-Min

Delete the node with minimum key from 𝐻 and return its element:

1. 𝑚 ≔ 𝐻.𝑚𝑖𝑛;

2. if 𝐻. 𝑠𝑖𝑧𝑒 > 0 then

3. remove 𝐻.𝑚𝑖𝑛 from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡;

4. add 𝐻.𝑚𝑖𝑛. 𝑐ℎ𝑖𝑙𝑑 (list) to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

5. 𝑯.𝑪𝒐𝒏𝒔𝒐𝒍𝒊𝒅𝒂𝒕𝒆();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. return 𝑚

𝐻.𝑚𝑖𝑛

Algorithm Theory Fabian Kuhn 8

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node 𝑣:

• 𝑟𝑎𝑛𝑘(𝑣): number of children of 𝑣 (degree of 𝑣)

Tree 𝑇:

• 𝑟𝑎𝑛𝑘 𝑇 : rank (degree) of root node of 𝑇

Heap 𝐻:

• 𝑟𝑎𝑛𝑘(𝐻): maximum degree (#children) of any node in 𝐻

Assumption (𝑛: number of nodes in 𝐻):

𝑟𝑎𝑛𝑘 𝐻 ≤ 𝐷(𝑛)

– for a known function 𝐷(𝑛)

Algorithm Theory Fabian Kuhn 9

Merging Two Trees

Given: Heap-ordered trees 𝑇, 𝑇′ with 𝑟𝑎𝑛𝑘 𝑇 = 𝑟𝑎𝑛𝑘(𝑇′)

• Assume: min-key of 𝑇 < min-key of 𝑇′

Operation 𝒍𝒊𝒏𝒌(𝑻, 𝑻′):

• Removes tree 𝑇′ from root list
and adds 𝑇′ to child list of 𝑇

• 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑟𝑎𝑛𝑘 𝑇 + 1

• (𝑇′. 𝑚𝑎𝑟𝑘 = 𝐟𝐚𝐥𝐬𝐞)

𝑇 𝑇′

𝑙𝑖𝑛𝑘

𝑇

𝑇′

Algorithm Theory Fabian Kuhn 10

Consolidate Example

14

255

20

12 22

9

18

2

8

171

13

15 3

71931

14

255

20

12 22

9

18

2

8

171

13

15 3

719

31

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 11

Consolidate Example

14

255

20

12 22

9

18

2

8

171

13

15 3

71931

𝒍𝒊𝒏𝒌

14 25

5

20

12 22

9

18

2

8

171

13

15 3

719

31

Algorithm Theory Fabian Kuhn 12

Consolidate Example

14 25

5

20

12 22

9

18

2

8

171

13

15

3

71931

14 25

5

20

12 22

9

18

2

8

171

13

15 3

719

31

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 13

Consolidate Example

14

255

20

12 22

9

18

2

8

171

13

15

3

71931

14 25

5

20

12 22

9

18

2

8

171

13

15

3

71931

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 14

Consolidate Example

14

255

20

12 22

9

18

2

8 17

1

13

15

3

71931

14

255

20

12 22

9

18

2

8

171

13

15

3

71931

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 15

Consolidate Example

14

255

20

12 22

9

18

2

8

17

1

13 153

71931

14

255

20

12 22

9

18

2

8 17

1

13

15

3

71931

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 16

Consolidation of Root List

Array 𝐴 pointing to find roots with the same rank:

Consolidate:

1. for 𝑖 ≔ 0 to 𝐷(𝑛) do 𝐴 𝑖 ≔ null

2. while 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≠ null do

3. 𝑇 ≔ “delete and return first element of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡”

4. while 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≠ null do

5. 𝑇′ ≔ 𝐴 𝑟𝑎𝑛𝑘 𝑇

6. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑛𝑢𝑙𝑙

7. 𝑇 ≔ 𝑙𝑖𝑛𝑘(𝑇, 𝑇′)

8. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑇

9. Create new 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 and 𝐻.𝑚𝑖𝑛

⋯
0 1 2 𝐷(𝑛)

Time:

𝑶(|𝑯. 𝒓𝒐𝒐𝒕𝒍𝒊𝒔𝒕 +𝑫 𝒏

Algorithm Theory Fabian Kuhn 17

Operation Decrease-Key

Decrease-Key(𝒗, 𝒙): (decrease key of node 𝑣 to new value 𝑥)

1. if 𝑥 ≥ 𝑣. 𝑘𝑒𝑦 then return

2. 𝑣. 𝑘𝑒𝑦 ≔ 𝑥;

3. update 𝐻.𝑚𝑖𝑛 to point to 𝑣 if necessary

4. if 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ∨ 𝑥 ≥ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑘𝑒𝑦 then return

5. repeat

6. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡

7. 𝑯. 𝒄𝒖𝒕 𝒗

8. 𝑣 ≔ 𝑝𝑎𝑟𝑒𝑛𝑡

9. until ¬ 𝒗.𝒎𝒂𝒓𝒌 ∨ 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

10. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞
𝑣: new key 𝑥

key 𝑦 > 𝑥
cut

cut

cut
new mark

Algorithm Theory Fabian Kuhn 18

Operation Cut(𝑣)

Operation 𝐻. 𝑐𝑢𝑡(𝑣):

• Cuts 𝑣’s sub-tree from its parent and adds 𝑣 to rootlist

1. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then

2. // cut the link between 𝑣 and its parent

3. 𝑟𝑎𝑛𝑘 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑟𝑎𝑛𝑘 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 − 1;

4. remove 𝑣 from 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐ℎ𝑖𝑙𝑑 (list)

5. 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ null;

6. add 𝑣 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡; 𝑣.𝑚𝑎𝑟𝑘 ≔ false;

25

2

8

1

13

15

3

71931

𝒄𝒖𝒕(𝒗)
𝒗

25

2

8

1

13

153

719

31

𝒗

Algorithm Theory Fabian Kuhn 19

Decrease-Key Example

• Green nodes are marked

14 25

5

20

12

22

9

18

2

8

171

13

15

3

71931

Decrease-Key(𝒗, 𝟖)

𝒗

14 25

5

20 1222

98 2

8

171

13

15

3

71931

8

Algorithm Theory Fabian Kuhn 20

Fibonacci Heaps Marks

• Nodes in the root list (the tree roots) are always unmarked
 If a node is added to the root list (insert, decrease-key), the

mark of the node is set to false.

• Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

• A node 𝑣 is marked if and only if 𝑣 is not in the root list and 𝑣
has lost a child since 𝑣 was attached to its current parent
– a node can only change its parent by being moved to the root list

Algorithm Theory Fabian Kuhn 21

Fibonacci Heap Marks

History of a node 𝒗:

𝑣 is being linked to a node 𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

a child of 𝑣 is cut 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

a second child of 𝑣 is cut 𝑯. 𝒄𝒖𝒕 𝒗 ;
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝒇𝒂𝒍𝒔𝒆

• Hence, the boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has
lost a child since the last time 𝑣 was made the child of another
node.

• Nodes 𝑣 in the root list always have 𝑣.𝑚𝑎𝑟𝑘 = false

