"nr Algorithm Theory -

Chapter 5
Data Structures

Part V:
Fibonacci Heaps, Amortized Analysis

Fabian Kuhn

UNI

FREIBURG

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearinn

Remark: Both operations can take ®(n) time in the worst case!

Algorithm Theory Fabian Kuhn

2

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insertin O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

= requires amortized analysis

Algorithm Theory Fabian Kuhn

Amortized Cost of Fibonacci Heaps

* [|nitialize-heap, is-empty, get-min, insert, and merge
have worst-case and amortized cost O(1)

* Delete-min has amortized cost O(logn)
* Decrease-key has amortized cost O(1)

e Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0n+nyzlogn).

e We will now need the marks...

* Cost for Dijkstra & Prim/Jarnik: O(m + nlogn)

Algorithm Theory Fabian Kuhn

UNI
f

FREIBURG

Fibonacci Heaps: Marks

|
FRE:BURG

UNI

Cycle of a node:

1. Node vis removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list
v.mark = false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory Fabian Kuhn 5

Potential Function

UNI
FREIBURG

System state characterized by two parameters:
* R:number of trees (length of H.rootlist)
e M: number of marked nodes (not in the root list)

Potential function:

b =R+2M

Example:

* R=7,M=2 - &=11

Algorithm Theory Fabian Kuhn 6

Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

tinit: tis—empty: tinsert» tget—miru tmerge <1

* Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tael—min < D(n) + length of H.rootlist

e Operation descrease-key:

— Actual time: O(length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory Fabian Kuhn

Amortized Times

UNI
f

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_; <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

°* merge:
— Actual time: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: q; = ¢; + ¢; —d;_; <1

Algorithm Theory Fabian Kuhn 8

Amortized Time of Insert

UNI

FREIBURG

Assume that operation i is an insert operation:
 Actualtime:¢; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l) Ri — Ri—l + 1
Cbi —_ cI)i—l + 1

e Amortized time:

ai=t,-+<I>,-—<Di_1S2

Algorithm Theory Fabian Kuhn

Amortized Time of Delete-Min

UNI
f

FREIBURG

Assume that operation i is a delete-min operation:

Actual time: t; < D(n) + |H.rootlist|

Potential function ® = R + 2M:
* R:changes from |H.rootlist| to at most D(n) + 1

« M: (# of marked nodes that are not in the root list)

— Number of marks does not increase

M; = M;_4, R; <R;_{+D(n)+1—|H.rootlist|
b, <P, +D(n)+1—|H.rootlist|

Amortized Time:

Algorithm Theory

a; = ti+¢i_(bi—1 < ZD(n) +1

Fabian Kuhn

10

Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: ¢; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

v
/ newmark ‘marks root list
/ Uk Removed marks: Added to root list:
AU —1 Uq, ..., U u,uq, .., U
kD 1 k 1 k
mark removed (and u, if u is marked)

/ Ri — Ri—l = k + 1
! Added mark: v

M;—M;_{ <—(k—1)

Algorithm Theory Fabian Kuhn 11

Amortized Time of Decrease-Key

UNI

Assume that operation i is a decrease-key operation at node u:
Actual time: ¢; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true
> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

RiSRi_1+k+1, Ml'SMl'_1+1_k
D, <b,_ +(k+1)-2k—-1)=d;,_,+3—k

Amortized time:
ai:ti‘l‘q)i—q)i_lgk‘l‘l‘l‘g—k:‘l-

Algorithm Theory Fabian Kuhn 12

FREIBURG

Complexities Fibonacci Heap

UNI
f

FREIBURG

* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min: 0(D(n)) .
(> amortized

* Decrease-Key: 0(1)

* Merge (heaps of sizemandn, m < n): 0(1)

* How large can D(n) get?

Algorithm Theory Fabian Kuhn

13

Rank of Children

UNI
f

FREIBURG

Lemma:

Consider a node v of rank k and let uq, ..., u; be the children of v in
the order in which they were linked to v. Then,

rank(u;) > i— 2.

Proof:
When u; is added, v already Each node can lose
has children uq, ..., u;_1: at most one child:
v
AN >i—1
/
/
U; ’
21’—1% Uj—q o Uy
= rank(u;) =i — 1 when = rank(u;) =i — 2 as long
u; is linked to v. as u; is linked to v.

Algorithm Theory Fabian Kuhn 14

Size of Trees

Fibonacci Numbers:
FO — O, Fl — 1, Vk = Z:Fk — Fk—Z + Fk—l

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with
rank k is at least Fy, ..

Proof:

* Si: minimum size of the sub-tree of a node of rank k
k—2

50:1: Q SkZZ_I_zS] Y
j=0

51222

Algorithm Theory Fabian Kuhn

UNI
f

FREIBURG

Size of Trees

UNI
FREIBURG

k—2
So =1, Sy =2, Vk22:5k22+25i
i=0
Claim about Fibonacci numbers:

VkZO:Fk+2=1+ZFi (F():O,F]_:l)
=0

Proof of claim (by induction on k): 0

* Base case (k = 0): F2=1+2Fi=1+F0=1

=0
* Induction step (k> 0): k—1
k—1 =0 =0

I.H.: Fk+1 — 1 + z Fl

Algorithm Theory i=0 16

Size of Trees

UNI
FREIBURG

k-2
SO = 1,51 = Z,Vk > Z:Sk = 2+ZSU

T
+
N
I
p—
|
M=
-

o~
Il
o

Claim of lemma: S, = Fj. .,

Proof by induction on k:
* Basecase(k=0,k=1): So=F,=1 S =2F;=2

* Induction step (k > 1):

k-2 k-2 k
52243 5224 Faz2+) B=1+) K = s
=0 =0 Jj=2 j=0
I.H. j=1i+2 Fo=0,F; =1|| previous claim
on Fibonacci
numbers

Algorithm Theory Fabian Kuhn 17

Size of Trees

UNI
f

FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k

is at least Fy, 5.

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).
Proof:
* The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
w2 ()

 ForD(n) = k, we needn = F;,,, nodes.

Algorithm Theory Fabian Kuhn 18

Binary Heaps & Fibonacci Heaps

UNI
FREIBURG

initialize
insert
get-min
delete-min
decrease-key

is-empty

Algorithm Theory

Binary Heap

0(1)
O(logn)
0(1)
O(logn)
O(log n)
0(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0(1)
0(1)
O(logn) *
o(1)*
0(1)

amortized time

19

