
Algorithm Theory

Chapter 5

Data Structures

Part V:
Fibonacci Heaps, Amortized Analysis

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Cost of Delete-Min & Decrease-Key

Delete-Min:

1. Delete min. root 𝑟 and add 𝑟. 𝑐ℎ𝑖𝑙𝑑 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 1

2. Consolidate 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷(𝑛)

• Step 2 can potentially be linear in 𝑛 (size of 𝐻)

Decrease-Key (at node 𝒗):

1. If new key < parent key, cut sub-tree of node 𝑣
time: 𝑂(1)

2. Cascading cuts up the tree as long as nodes are marked
time: 𝑂(number of consecutive marked nodes)

• Step 2 can potentially be linear in 𝑛

Remark: Both operations can take 𝚯(𝒏) time in the worst case!

Algorithm Theory Fabian Kuhn 3

Cost of Delete-Min & Decrease-Key

• Cost of delete-min and decrease-key can be Θ(𝑛)…
– Seems a large price to pay to get insert in 𝑂(1) time

• Maybe, the operations are efficient most of the time?
– It seems to require a lot of operations to get a long rootlist and thus,

an expensive consolidate operation

– In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

• Can we show that the average cost per operation is small?

⟹ requires amortized analysis

Algorithm Theory Fabian Kuhn 4

Amortized Cost of Fibonacci Heaps

• Initialize-heap, is-empty, get-min, insert, and merge
have worst-case and amortized cost 𝑶(𝟏)

• Delete-min has amortized cost 𝑶(𝐥𝐨𝐠𝒏)

• Decrease-key has amortized cost 𝑶(𝟏)

• Starting with an empty heap, any sequence of 𝑛 operations
with at most 𝑛𝑑 delete-min operations has total cost (time)

𝑻 = 𝑶 𝒏 + 𝒏𝒅 𝐥𝐨𝐠𝒏 .

• We will now need the marks…

• Cost for Dijkstra & Prim/Jarník: 𝑂 𝑚 + 𝑛 log 𝑛

Algorithm Theory Fabian Kuhn 5

Fibonacci Heaps: Marks

Cycle of a node:

1. Node 𝑣 is removed from root list and linked to a node
𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

2. Child node 𝑢 of 𝑣 is cut and added to root list
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

3. Second child of 𝑣 is cut
node 𝒗 is cut as well and moved to root list
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐟𝐚𝐥𝐬𝐞

The boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has lost a
child since the last time 𝑣 was made the child of another node.

Algorithm Theory Fabian Kuhn 6

Potential Function

System state characterized by two parameters:

• 𝑹: number of trees (length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡)

• 𝑴: number of marked nodes (not in the root list)

Potential function:
𝚽 ≔ 𝑹+ 𝟐𝑴

Example:

• 𝑅 = 7, 𝑀 = 2  Φ = 11

14 25

5

20 1222

918 2

8

171

13

15

3

71931

Algorithm Theory Fabian Kuhn 7

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

actual time: 𝑂(1)

– Normalize unit time such that

𝑡𝑖𝑛𝑖𝑡 , 𝑡𝑖𝑠−𝑒𝑚𝑝𝑡𝑦, 𝑡𝑖𝑛𝑠𝑒𝑟𝑡 , 𝑡𝑔𝑒𝑡−𝑚𝑖𝑛, 𝑡𝑚𝑒𝑟𝑔𝑒 ≤ 1

• Operation delete-min:

– Actual time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷 𝑛

– Normalize unit time such that

𝑡𝑑𝑒𝑙−𝑚𝑖𝑛 ≤ 𝐷 𝑛 + length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

• Operation descrease-key:
– Actual time: 𝑂 length of path to next unmarked ancestor

– Normalize unit time such that

𝑡𝑑𝑒𝑐𝑟−𝑘𝑒𝑦 ≤ length of path to next unmarked ancestor

Algorithm Theory Fabian Kuhn 8

Amortized Times

Assume operation 𝑖 is of type:

• initialize-heap:
– actual time: 𝑡𝑖 ≤ 1, potential: Φ𝑖−1 = Φ𝑖 = 0

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

• is-empty, get-min:
– actual time: 𝑡𝑖 ≤ 1, potential: Φ𝑖 = Φ𝑖−1 (heap doesn’t change)

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

• merge:
– Actual time: 𝑡𝑖 ≤ 1

– combined potential of both heaps: Φ𝑖 = Φ𝑖−1

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

Algorithm Theory Fabian Kuhn 9

Amortized Time of Insert

Assume that operation 𝑖 is an insert operation:

• Actual time: 𝑡𝑖 ≤ 1

• Potential function:
– 𝑀 remains unchanged (no nodes are marked or unmarked, no marked

nodes are moved to the root list)

– 𝑅 grows by 1 (one element is added to the root list)

𝑀𝑖 = 𝑀𝑖−1, 𝑅𝑖 = 𝑅𝑖−1 + 1
Φ𝑖 = Φ𝑖−1 + 1

• Amortized time:

𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝟐

Algorithm Theory Fabian Kuhn 10

Amortized Time of Delete-Min

Assume that operation 𝑖 is a delete-min operation:

Actual time: 𝑡𝑖 ≤ 𝐷 𝑛 + 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• 𝑅: changes from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 to at most 𝐷 𝑛 + 1

• 𝑀: (# of marked nodes that are not in the root list)
– Number of marks does not increase

𝑀𝑖 = 𝑀𝑖−1, 𝑅𝑖 ≤ 𝑅𝑖−1 + 𝐷 𝑛 + 1 − 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
Φ𝑖 ≤ Φ𝑖−1 + 𝐷 𝑛 + 1 − |𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡|

Amortized Time:
𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝟐𝑫 𝒏 + 𝟏

Algorithm Theory Fabian Kuhn 11

Amortized Time of Decrease-Key

Assume that operation 𝑖 is a decrease-key operation at node 𝑢:

Actual time: 𝑡𝑖 ≤ length of path to next unmarked ancestor 𝑣

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• Assume, node 𝑢 and nodes 𝑢1, … , 𝑢𝑘 are moved to root list
– 𝑢1, … , 𝑢𝑘 are marked and moved to root list, 𝑣.mark is set to true

𝑢

𝑢1

𝑢2

𝑢𝑘−1

𝑢𝑘

𝑣
new mark

mark removed

marks root list

Removed marks:
𝑢1, … , 𝑢𝑘

(and 𝑢, if 𝑢 is marked)

Added mark: 𝑣

𝑴𝒊 −𝑴𝒊−𝟏 ≤ −(𝒌 − 𝟏)

Added to root list:
𝑢, 𝑢1, … , 𝑢𝑘

𝑹𝒊 − 𝑹𝒊−𝟏 = 𝒌 + 𝟏

Algorithm Theory Fabian Kuhn 12

Amortized Time of Decrease-Key

Assume that operation 𝑖 is a decrease-key operation at node 𝑢:

Actual time: 𝑡𝑖 ≤ length of path to next unmarked ancestor 𝑣

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• Assume, node 𝑢 and nodes 𝑢1, … , 𝑢𝑘 are moved to root list
– 𝑢1, … , 𝑢𝑘 are marked and moved to root list, 𝑣.mark is set to true

• ≥ 𝑘 marked nodes go to root list, ≤ 1 node gets newly marked

• 𝑅 grows by ≤ 𝑘 + 1, 𝑀 grows by 1 and is decreased by ≥ 𝑘

𝑅𝑖 ≤ 𝑅𝑖−1 + 𝑘 + 1, 𝑀𝑖 ≤ 𝑀𝑖−1 + 1 − 𝑘
Φ𝑖 ≤ Φ𝑖−1 + 𝑘 + 1 − 2 𝑘 − 1 = Φ𝑖−1 + 3 − 𝑘

Amortized time:

𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝒌 + 𝟏 + 𝟑 − 𝒌 = 𝟒

Algorithm Theory Fabian Kuhn 13

Complexities Fibonacci Heap

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge (heaps of size 𝑚 and 𝑛, 𝑚 ≤ 𝑛):

• How large can 𝑫(𝒏) get?

𝑶(𝟏)

𝑶(𝟏)

𝑶 𝟏

𝑶(𝟏)

𝑶 𝟏

𝑶 𝑫(𝒏)

𝑶 𝟏
amortized

Algorithm Theory Fabian Kuhn 14

Rank of Children

Lemma:

Consider a node 𝑣 of rank 𝑘 and let 𝑢1, … , 𝑢𝑘 be the children of 𝑣 in
the order in which they were linked to 𝑣. Then,

𝒓𝒂𝒏𝒌 𝒖𝒊 ≥ 𝒊 − 𝟐.

Proof:

When 𝑢𝑖 is added, 𝑣 already
has children 𝑢1, … , 𝑢𝑖−1:

𝑢1𝑢𝑖−1

𝒖𝒊

⋯

𝑣
≥ 𝑖 − 1

≥ 𝑖 − 1

⟹ 𝑟𝑎𝑛𝑘 𝑢𝑖 ≥ 𝑖 − 1 when
𝑢𝑖 is linked to 𝑣.

Each node can lose
at most one child:

𝑢1𝑢2𝑢3𝑢4𝑢𝑘
⋯

⋯

⋯

≥ 𝑘 − 2 ≥ 1≥ 2 ≥ 0

𝑣

⟹ 𝑟𝑎𝑛𝑘 𝑢𝑖 ≥ 𝑖 − 2 as long
as 𝑢𝑖 is linked to 𝑣.

≥ 0

Algorithm Theory Fabian Kuhn 15

Size of Trees

Fibonacci Numbers:
𝐹0 = 0, 𝐹1 = 1, ∀𝑘 ≥ 2: 𝐹𝑘 = 𝐹𝑘−2 + 𝐹𝑘−1

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node 𝑣 with
rank 𝑘 is at least 𝐹𝑘+2.

Proof:

• 𝑆𝑘: minimum size of the sub-tree of a node of rank 𝑘

𝑺𝟎 = 𝟏:

𝑺𝟏 = 𝟐:

𝑺𝒌 ≥ 𝟐 +෍

𝒋=𝟎

𝒌−𝟐

𝑺𝒋 :

𝑢1𝑢2𝑢3𝑢4𝑢𝑘

⋯

⋯

≥ 𝑆𝑘−2 ≥ 𝑆1≥ 𝑆2 ≥ 𝑆0

𝑣

= 2

Algorithm Theory Fabian Kuhn 16

Size of Trees

𝑆0 = 1, 𝑆1 = 2, ∀𝑘 ≥ 2: 𝑆𝑘 ≥ 2 +෍

𝑖=0

𝑘−2

𝑆𝑖

Claim about Fibonacci numbers:

∀𝑘 ≥ 0: 𝐹𝑘+2 = 1 +෍

𝑖=0

𝑘

𝐹𝑖

Proof of claim (by induction on 𝒌):

• Base case (𝒌 = 𝟎):

• Induction step (𝒌 > 𝟎):

(𝐹0 = 0, 𝐹1 = 1)

𝐹2 = 1 +෍

𝑖=0

0

𝐹𝑖 = 1 + 𝐹0 = 1

𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1 = 𝐹𝑘 + 1 +෍

𝑖=0

𝑘−1

𝐹𝑖 = 1 +෍

𝑖=0

𝑘

𝐹𝑖

I.H.: 𝐹𝑘+1 = 1 +෍

𝑖=0

𝑘−1

𝐹𝑖

Algorithm Theory Fabian Kuhn 17

Size of Trees

𝑆0 = 1, 𝑆1 = 2, ∀𝑘 ≥ 2: 𝑆𝑘 ≥ 2 +෍

𝑖=0

𝑘−2

𝑆𝑖 , 𝐹𝑘+2 = 1 +෍

𝑖=0

𝑘

𝐹𝑖

Claim of lemma: 𝑆𝑘 ≥ 𝐹𝑘+2

Proof by induction on 𝒌:

• Base case (𝑘 = 0, 𝑘 = 1):

• Induction step (𝑘 > 1):

𝑆0 ≥ 𝐹2 = 1 𝑆1 ≥ 𝐹3 = 2

𝑆𝑘 ≥ 2 +෍

𝑖=0

𝑘−2

𝑆𝑖 ≥ 2 +෍

𝑖=0

𝑘−2

𝐹𝑖+2 = 2 +෍

𝑗=2

𝑘

𝐹𝑗 = 1 +෍

𝑗=0

𝑘

𝐹𝑗 = 𝐹𝑘+2

I.H. 𝑗 = 𝑖 + 2 𝐹0 = 0, 𝐹1 = 1 previous claim
on Fibonacci

numbers

Algorithm Theory Fabian Kuhn 18

Size of Trees

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node 𝑣 with rank 𝑘
is at least 𝐹𝑘+2.

Theorem:
The maximum rank of a node in a Fibonacci heap of size 𝑛 is at most

𝑫 𝒏 = 𝑶(𝐥𝐨𝐠𝒏) .

Proof:

• The Fibonacci numbers grow exponentially:

𝐹𝑘 =
1

5
⋅

1 + 5

2

𝑘

−
1 − 5

2

𝑘

• For 𝐷 𝑛 ≥ 𝑘, we need 𝑛 ≥ 𝐹𝑘+2 nodes.

Algorithm Theory Fabian Kuhn 19

Binary Heaps & Fibonacci Heaps

Binary Heap Fibonacci Heap

initialize 𝑶(𝟏) 𝑶(𝟏)

insert 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝟏)

get-min 𝑶(𝟏) 𝑶(𝟏)

delete-min 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝐥𝐨𝐠 𝒏) *

decrease-key 𝑶 𝐥𝐨𝐠 𝒏 𝑶(𝟏) *

is-empty 𝑶(𝟏) 𝑶(𝟏)

∗ amortized time

