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Fast Ford Fulkerson Implementations
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Non-Integer Capacities

FREIBURG

If a given flow network has integer capacities, the Ford-Fulkerson
algorithm computes a maximum flow of value C in time O(m - C).

What if capacities are not integers?

* rational capacities:
— can be turned into integers by multiplying them with large enough integer

— algorithm still works correctly

* real (non-rational) capacities:

— not clear whether the algorithm always terminates

* even for integer capacities, time can linearly depend on the value
of the maximum flow
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Slow Execution
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 Number of iterations: 2000 (value of max. flow)
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Improved Algorithm
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Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max ¢, rounded down to next power of 2")

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

* If thereis no such path: A := A/z
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Scaling Parameter Analysis
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Lemma: If all capacities are integers, number of different scaling
parameters used is < 1 + |log, caxl-

Cmax = meaX Ce

At the beginning: A = 211982 cmax|
At the end: A=1

# different scaling parameters A: [log, cpax] + 1

* A-scaling phase: Time during which scaling parameter is A

running time = #scaling phases' - #fiterations per phasg - 0(m)

Y

0(log cmax) ?2??
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Length of a Scaling Phase

Lemma: If f is the flow at the end of the A-scaling phase, the
maximum flow in the network has value less than |f| + mA.

Proof:

« Define A: set of nodes that can be reached from s on a path
with residual capacities = A in Gy. m, edges

Residual capacity < A fle) <A

Ifl= fout(z) - fin(z) > C(Z, E) —mA —myA = C(Z, E) — mA
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Length of a Scaling Phase
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Lemma: The number of augmentation in each scaling phase
is less than 2m.

Proof:
* Atthe end of the 2A-scaling phase: |f*| < |f| + 2mA

 Each augmentation in the A-scaling phase improves the value
of the flow f by at least A.

* f#augmentations in A-scaling phase < 2m.
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Running Time: Scaling Max Flow Alg.
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Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O (m log ¢,.%)-
The algorithm can be implemented in time 0(m? 108 ¢yyay)-

Proof:

» ftscaling phases: O(log cpax)
« ftiterations per scaling phase: O(m)

* time per iteration: O(m)
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Strongly Polynomial Algorithm
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* Time of regular Ford-Fulkerson algorithm with integer capacities:
O(mcC)

* Time of algorithm with scaling parameter:

0 (m* log cmax)
* O(logcpax) is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

 Edmonds-Karp Alg.: Always picking a shortest augmenting path:
0(m?n)

— also works for arbitrary real-valued weights
— We will show this next.

Algorithm Theory Fabian Kuhn 9



UNI

Shortest Augmenting Path Algorithm
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 Define G;“ as the subgraph of G with only the edges with positive
residual capacity.

— augmenting path = any s-t path in GF

* Level /(v) of node v:
length (# of edges) of shortest path from s to v in GF.

2(s)=0 ¢(v) =0 2() =1 ¢(v) =2 t(w)=d—1¢@¢t)=d

~ ZO

>0
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Shortest Augmenting Path Algorithm

Lemma 1: For every node v, the level £(v) is non-decreasing.

Proof:
* Consider augmentation along one augmenting path

(s) =0 Y(vy)) =1 (v,)=2 Y(v3) =3 f(vy) =4 (vs) =5 P(t) =d

[T R R E Y

— Before augmentation, edges are between consecutive levels

 The set of edges of GF only changes if the residual capacity of some
edge changes: e

-~
-~
il T -
o

— If e is on augmenting path P and c, = bottleneck(P, f), after
augmentation, ¢, = 0 and e is removed from G]Z*

— The residual cap. of the edge e’ in the opposite direction could increase
from 0 to > 0 and be added to G#
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Shortest Augmenting Path Algorithm

FREIBURG

Lemma 1: For every node v, the level £(v) is non-decreasing.
Proof:
* Consider augmentation along one augmenting path

(s) =0 Y(vy)) =1 (v,)=2 Y(v3) =3 f(vy) =4 (vs) =5 P(t) =d

[T R R E Y

— Before augmentation, edges are between consecutive levels
— A shortest augmenting path consists of exactly one node of each level.

— The only new edges are from level i + 1 to level i for some i = 0.
(for the levels before augmenting along the path)

-~
~-~~
-
———————————

— Such edges cannot create shortcuts to create s-w paths of length < £(w)
— Levels of all nodes are non-decreasing.
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Shortest Augmenting Path Algorithm
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Lemma 2: There are at most O(m - n) augmentation steps.
Proof:

* In each augmentation step, at least one edge (u, v) is deleted from G;“
— Some edge e = (u, v) on the augmenting path P has c, = bottleneck(P, f)
— The residual capacity of e is set to 0 and e is removed from Gf’

* When (u,v) is deleted from G7, for some i > 0:
(u) =i, t(v) =i+1
e If (u,v)is later added back to Gfr, for somej = 0:
t(w)=j+1, L) =]

* Because level £(v) is non-decreasing: j =i + 1
= When (u, v) is added back, #(u) =i+ 2

* Because the maximum possible level is n — 1, each edge is deleted
from G at most O(n) times.
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Shortest Augmenting Path Algorithm
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Theorem: The Edmonds-Karp algorithm computes a maximum flow in
time O(m?n) even with arbitrary non-negative capacity values.

 Edmonds-Karp algorithm = Ford-Fulkerson algorithm,
where we choose a shortest augmenting path in each step.

Proof:
* From lemma before: O(m - n) augmentation steps

e A shortest augmenting path can be found in time O(m + n) by using a
BFS traversal on the positive residual graph Gfr.
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Other Algorithms
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* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm: [Goldberg,Tarjan 1986]
— Maintains a preflow (V nodes: inflow > outflow)
— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O0(m - n?)
— Doing steps in the “right” order: 0(n3)

* Current best known complexity: O(m - n)

— For graphs with m > n'*¢ [King,Rao,Tarjan 1992/1994]

(for every constant € > 0)

— For sparse graphs with m < n16/15-6 [Orlin, 2013]
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