
Algorithm Theory

Chapter 6

Graph Algorithms

Part III:
Fast Ford Fulkerson Implementations

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Non-Integer Capacities

If a given flow network has integer capacities, the Ford-Fulkerson
algorithm computes a maximum flow of value 𝐶 in time 𝑂(𝑚 ⋅ 𝐶).

What if capacities are not integers?

• rational capacities:
– can be turned into integers by multiplying them with large enough integer

– algorithm still works correctly

• real (non-rational) capacities:
– not clear whether the algorithm always terminates

• even for integer capacities, time can linearly depend on the value
of the maximum flow

Algorithm Theory Fabian Kuhn 3

Slow Execution

• Number of iterations: 2000 (value of max. flow)

𝑠 𝑡

𝑢

𝑣

1000

1000

1000

1000

1

Algorithm Theory Fabian Kuhn 4

Improved Algorithm

Idea: Find the best augmenting path in each step

• best: path 𝑃 with maximum bottleneck(𝑃, 𝑓)

• Best path might be rather expensive to find
 find almost best path

• Scaling parameter 𝚫:
(initially, Δ = "max 𝑐𝑒 rounded down to next power of 2")

• As long as there is an augmenting path that improves the flow by
at least Δ, augment using such a path

• If there is no such path: Δ ≔ ΤΔ 2

Algorithm Theory Fabian Kuhn 5

Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling
parameters used is ≤ 1 + ⌊log2 𝑐max⌋.

• 𝚫-scaling phase: Time during which scaling parameter is Δ

𝑐max≔ max
𝑒

𝑐𝑒

At the beginning: Δ = 2 log2 𝑐max

At the end: Δ = 1

different scaling parameters Δ: log2 𝑐max + 1

running time = #scaling phases ⋅ #iterations per phase ⋅ 𝑂 𝑚

𝑂 log 𝑐max ???

Algorithm Theory Fabian Kuhn 6

Length of a Scaling Phase

Lemma: If 𝑓 is the flow at the end of the Δ-scaling phase, the
maximum flow in the network has value less than 𝑓 + 𝑚Δ.

Proof:

• Define 𝐴: set of nodes that can be reached from 𝑠 on a path
with residual capacities ≥ Δ in 𝐺𝑓.

𝐴
𝑠

≥ Δ
≥ Δ

≥ Δ
≥ Δ

≥ Δ

≥ Δ ≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ ≥ Δ

≥ Δ

𝐵
𝑡

Residual capacity < Δ

< Δ

< Δ

< Δ

< Δ

< Δ

𝐴 𝐵
𝑠 𝑡

𝑚1 edges
𝑓 𝑒 > 𝑐𝑒 − Δ

𝑚2 edges
𝑓 𝑒 < Δ

𝑓 = 𝑓out 𝐴 − 𝑓in 𝐴 > 𝑐 𝐴, 𝐵 −𝑚1Δ −𝑚2Δ ≥ 𝑐 𝐴, 𝐵 −𝑚Δ

Algorithm Theory Fabian Kuhn 7

Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase
is less than 2𝑚.

Proof:

• At the end of the 2Δ-scaling phase: 𝑓∗ < 𝑓 + 2𝑚Δ

• Each augmentation in the Δ-scaling phase improves the value
of the flow 𝑓 by at least Δ.

• #augmentations in Δ-scaling phase < 2𝑚.

Algorithm Theory Fabian Kuhn 8

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most 𝑂(𝑚 log 𝑐max).
The algorithm can be implemented in time 𝑂 𝑚2 log 𝑐max .

Proof:

• #scaling phases: 𝑂 log 𝑐max

• #iterations per scaling phase: 𝑂 𝑚

• time per iteration: 𝑂 𝑚

Algorithm Theory Fabian Kuhn 9

Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

𝑂(𝑚𝐶)

• Time of algorithm with scaling parameter:

𝑂 𝑚2 log 𝑐max

• 𝑂(log 𝑐max) is polynomial in the size of the input, but not in 𝑛

• Can we get an algorithm that runs in time polynomial in 𝑛?

• Edmonds-Karp Alg.: Always picking a shortest augmenting path:

𝑂 𝑚2𝑛

– also works for arbitrary real-valued weights

– We will show this next.

Algorithm Theory Fabian Kuhn 10

Shortest Augmenting Path Algorithm

• Define 𝐺𝑓
+ as the subgraph of 𝐺𝑓 with only the edges with positive

residual capacity.

– augmenting path = any 𝑠-𝑡 path in 𝐺𝑓
+

• Level ℓ 𝒗 of node 𝒗:
length (# of edges) of shortest path from 𝑠 to 𝑣 in 𝐺𝑓

+.

𝑠 𝑡

ℓ(𝑠) = 0 ℓ(𝑣) = 0 ℓ(𝑣) = 1 ℓ(𝑣) = 2 ℓ 𝑣 = 𝑑 − 1 ℓ(𝑡) = 𝑑

⋯

Algorithm Theory Fabian Kuhn 11

Shortest Augmenting Path Algorithm

Lemma 1: For every node 𝑣, the level ℓ 𝑣 is non-decreasing.

Proof:

• Consider augmentation along one augmenting path

– Before augmentation, edges are between consecutive levels

• The set of edges of 𝐺𝑓
+ only changes if the residual capacity of some

edge changes:

– If 𝑒 is on augmenting path 𝑃 and 𝑐𝑒 = bottleneck(𝑃, 𝑓), after
augmentation, 𝑐𝑒 = 0 and 𝑒 is removed from 𝐺𝑓

+

– The residual cap. of the edge 𝑒′ in the opposite direction could increase
from 0 to > 0 and be added to 𝐺𝑓

+

𝑠 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑡

ℓ(𝑠) = 0 ℓ(𝑣1) = 1 ℓ(𝑣2) = 2 ℓ(𝑣3) = 3 ℓ(𝑣4) = 4 ℓ(𝑣5) = 5 ℓ(𝑡) = 𝑑

⋯

𝑢 𝑣
𝑒

𝑒′

Algorithm Theory Fabian Kuhn 12

Shortest Augmenting Path Algorithm

Lemma 1: For every node 𝑣, the level ℓ 𝑣 is non-decreasing.

Proof:

• Consider augmentation along one augmenting path

– Before augmentation, edges are between consecutive levels

– A shortest augmenting path consists of exactly one node of each level.

– The only new edges are from level 𝑖 + 1 to level 𝑖 for some 𝑖 ≥ 0.
(for the levels before augmenting along the path)

– Such edges cannot create shortcuts to create 𝑠-𝑤 paths of length < ℓ 𝑤

– Levels of all nodes are non-decreasing.

𝑠 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑡

ℓ(𝑠) = 0 ℓ(𝑣1) = 1 ℓ(𝑣2) = 2 ℓ(𝑣3) = 3 ℓ(𝑣4) = 4 ℓ(𝑣5) = 5 ℓ(𝑡) = 𝑑

⋯

𝑢 𝑣
𝑒

𝑒′

Algorithm Theory Fabian Kuhn 13

Shortest Augmenting Path Algorithm

Lemma 2: There are at most 𝑂 𝑚 ⋅ 𝑛 augmentation steps.

Proof:

• In each augmentation step, at least one edge 𝑢, 𝑣 is deleted from 𝐺𝑓
+

– Some edge 𝑒 = 𝑢, 𝑣 on the augmenting path 𝑃 has 𝑐𝑒 = bottleneck(𝑃, 𝑓)

– The residual capacity of 𝑒 is set to 0 and 𝑒 is removed from 𝐺𝑓
+

• When 𝑢, 𝑣 is deleted from 𝐺𝑓
+, for some 𝑖 ≥ 0:

ℓ 𝑢 = 𝑖, ℓ 𝑣 = 𝑖 + 1

• If 𝑢, 𝑣 is later added back to 𝐺𝑓
+, for some 𝑗 ≥ 0:

ℓ 𝑢 = 𝑗 + 1, ℓ 𝑣 = 𝑗

• Because level ℓ(𝑣) is non-decreasing: 𝑗 ≥ 𝑖 + 1
⟹ When 𝑢, 𝑣 is added back, ℓ 𝑢 ≥ 𝑖 + 2

• Because the maximum possible level is 𝑛 − 1, each edge is deleted
from 𝐺𝑓

+ at most 𝑂 𝑛 times.

Algorithm Theory Fabian Kuhn 14

Shortest Augmenting Path Algorithm

Theorem: The Edmonds-Karp algorithm computes a maximum flow in
time 𝑂 𝑚2𝑛 even with arbitrary non-negative capacity values.

• Edmonds-Karp algorithm = Ford-Fulkerson algorithm,
where we choose a shortest augmenting path in each step.

Proof:

• From lemma before: 𝑂 𝑚 ⋅ 𝑛 augmentation steps

• A shortest augmenting path can be found in time 𝑂 𝑚 + 𝑛 by using a
BFS traversal on the positive residual graph 𝐺𝑓

+.

Algorithm Theory Fabian Kuhn 15

Other Algorithms

• There are many other algorithms to solve the maximum flow
problem, for example:

• Preflow-push algorithm: [Goldberg,Tarjan 1986]

– Maintains a preflow (∀ nodes: inflow ≥ outflow)

– Alg. guarantees: As soon as we have a flow, it is optimal

– Detailed discussion in 2012/13 lecture

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2

– Doing steps in the “right” order: 𝑂 𝑛3

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏
– For graphs with 𝑚 ≥ 𝑛1+𝜖 [King,Rao,Tarjan 1992/1994]

(for every constant 𝜖 > 0)

– For sparse graphs with 𝑚 ≤ 𝑛 Τ16 15−𝛿 [Orlin, 2013]

