"nr Algorithm Theory

Chapter 6
Graph Algorithms

Part IV:
Simple Maximum Flow Applications

Fabian Kuhn

UNI

FREIBURG

Maximum Flow Applications

UNI
FREIBURG

 Maximum flow has many applications

* Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

 Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints

Algorithm Theory Fabian Kuhn 2

Undirected Edges and Vertex Capacities _

UNI

FREIBURG

Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}:
fin@) = £) <

* Replace node v by edge e, = {Vip, Vout}:
e O

Algorithm Theory Fabian Kuhn 3

Minimum s-t Cut

UNI
FREIBURG

Given: undirected graph ¢ = (V,E), nodes s, t €V
s-t cut: Partition (4,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

size of cut = #edges crossing the cut
Objective: find s-t cut of minimum size

 (Create flow network:

— make edges directed: O O O

— edge capacities =1

e Size of cutin G = capacity of cut in flow network

Algorithm Theory Fabian Kuhn 4

UNI

Edge Connectivity

FREIBURG

Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1 if the graph Gy = (V,E \ X) is connected for every edge set

XCE |X|<k-1. Need to remove > k
edges to disconnect G
A : K B> Edge Connectivity A(G)
max k such that G is
>k = A(G) k-edge connected.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V
— Actually for all s, t in different components of Gy = (V,E \ X)

* Fix s, find min s-t cut for all t # s = running time 0(mn?)

Algorithm Theory Fabian Kuhn 5

Minimum s-t Vertex-Cut

UNI
f

FREIBURG

Given: undirected graph ¢ = (V,E), nodes s, t €V

s-t vertex cut: Set X € V suchthats,t € X and sand t are in
different components of the sub-graph G[V \ X] induced by V' \ X

Size of vertex cut: | X| @QX j})

Objective: find s-t vertex-cut of minimum size

* Replace undirected edges {u, v} by (u,v) and (v, u)
 Compute max s-t flow for edge capacities co and node capacities

c, = 1lforv #s,t % M
0,0)
* Replace each node v by v, and vt

* Min edge cut corresponds to min vertex cut in G

Algorithm Theory Fabian Kuhn 6

Vertex Connectivity

UNI
f

FREIBURG

Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for

every edge set
XcVv,|X|<k-1. Need to remove = k

edges to disconnect G

1X| = k = k(G) Vertex Connectivity k(G)

max k such that G is
@ k-vertex connected.

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

X

 Compute minimum s-t vertex cut for all s and all £ # s such that ¢t
is not a neighbor of s = running time O(m - n3®)

Algorithm Theory Fabian Kuhn 7

UNI

Edge-Disjoint Paths

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as many edge-disjoint s-t paths as possible

R
B
Solution:

* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

e Correctness follows from flow conservation f*(v) = foUt(v)

Algorithm Theory Fabian Kuhn 8

Vertex-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as many internally vertex-disjoint s-t paths as possible

: X

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

e Correctness follows from flow conservation f"(v) = fOUt(v)

Algorithm Theory Fabian Kuhn 9

Menger’s Theorem

UNI
FREIBURG

Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € V/, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with non-adjacent nodes s,t € V, the
size of the minimum s-t vertex cut equals the maximum number of
pairwise internally vertex-disjoint paths from s to t.

* Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory Fabian Kuhn 10

