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Metric TSP

Input: 

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites) 

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution: 

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal: 

• Minimize length of TSP path or TSP tour 
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Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the 
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…
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TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the 
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP 
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.

𝑤 MST ≤ TSPPATH ≤ TSPTOUR
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The MST Tour

Walk around the MST…

19
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The MST Tour

Walk around the MST…
cost (walk) = 𝟐 ⋅ 𝒘(𝐌𝐒𝐓)

cost (tour)  ≤ 𝟐 ⋅ 𝒘(𝐌𝐒𝐓)

19
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Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the 
metric TSP problem.

Proof:

• Triangle inequality  length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?
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Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal 
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP 
path/tour of (𝑉, 𝑑).

Optimal TSP tour of 
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫
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TSP and Matching

• Consider a symmetric TSP instance (𝑉, 𝑑) with an even 
number of nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such 
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an 
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into 
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances 
represented by all edges in 𝑀:

𝑤 𝑀 =෍
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)
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TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even 
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at 
least twice the weight of a minimum weight perfect matching of 
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect 
matchings
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Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Remarks:

• We have seen that a maximum matching of an unweighted 
graph can be computed in polynomial time.

• With a more complicated algorithm, one can also compute a 
maximum weight matching of a weighted graph in polynomial 
time.

• The minimum weight perfect matching problem can easily be 
reduced to the maximum weighted matching problem.
– Just make sure that the graph is complete (by adding edges of 

sufficiently large weight) and define new edge weights 𝑤𝑒
′ ≔ 𝑤max −𝑤𝑒
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Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once 
(and where still the total edge weight is small compared to an 
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an 
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our 
MST suitably?
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Euler Tour

Theorem: A connected, unweighted (multi-)graph 𝐺 (no self-loops) 
has an Euler tour if and only if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges 
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TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees
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TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice
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TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation 
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only 

make the tour shorter


