
Algorithm Theory

Chapter 9

Online Algorithms

Part II:
Randomized Paging

Fabian Kuhn

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Randomized Algorithms

• We have seen that deterministic paging algorithms cannot be
better than 𝑘-competitive

• Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio 𝑐 ≥ 1 if for all inputs 𝐼,

𝔼 𝐀𝐋𝐆 𝑰 ≤ 𝒄 ⋅ 𝐎𝐏𝐓 𝑰 + 𝜶.

• If 𝛼 ≤ 0, we say that ALG is strictly 𝑐-competitive.

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Adversaries

• For randomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

• Has to determine the complete input sequence before the
algorithm starts
– The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

• The input sequence is constructed during the execution

• When determining the next input, the adversary knows how the
algorithm reacted to the previous inputs

• Input sequence depends on the random behavior of the alg.

• Sometimes, two adaptive adversaries are distinguished
– offline, online : different way of measuring the adversary cost

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Lower Bound

The adversaries can be ordered according to their strength

oblivious < adaptive online < adaptive offline

• An algorithm that achieves a given comp. ratio with an
adaptive adversary is at least as good with an oblivious one

• A lower bound that holds against an oblivious adversary also
holds for the adaptive adversaries

Theorem: No randomized paging algorithm can be better than
𝑘-competitive against an adaptive offline adversary.

Proof: The same proof as for deterministic algorithms works.

• For an adaptive online algorithm, a similar lower bound holds.

Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

The Randomized Marking Algorithm

• Every entry in fast memory has a marked flag

• Initially, all entries are unmarked.

• If a page in fast memory is accessed, it gets marked

• When a page fault occurs:

– If all 𝑘 pages in fast memory are marked,
all marked bits are set to 0

– The page to be evicted is chosen uniformly at random
among the unmarked pages

– The marked bit of the new page in fast memory is set to 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Example

Input Sequence (k=6):

3, 5, 3, 9, 6, 8, 2, 9, 5, 7, 1, 2, 5, 2, 3, 7, 4, 8, 1, 2, 7, 5,3,6,9,6,10,4,1,2…

Fast Memory:

Observations:

• At the end of a phase, the fast memory entries are exactly the 𝑘
pages of that phase

• At the beginning of a phase, all entries get unmarked

• #page faults depends on #new pages in a phase

phase 𝟏 phase 𝟐 phase 𝟑 phase 𝟒

𝟐 𝟓 𝟑 𝟔 𝟖 𝟗𝟐 𝟓 𝟑 𝟔 𝟖 𝟗𝟕 𝟏𝟐 𝟓 𝟑𝟒𝟕 𝟏𝟐 𝟓 𝟑𝟒𝟖 𝟏𝟐 𝟕𝟓 𝟑𝟓 𝟏𝟐 𝟑𝟖 𝟕𝟔 𝟗𝟏𝟎 𝟒𝟏 𝟐

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Page Faults per Phase

Consider a fixed phase 𝒊:

• Assume that of the 𝑘 pages of phase 𝑖, 𝑚𝑖 are new and 𝑘 −𝑚𝑖

are old (i.e., they already appear in phase 𝑖 − 1)

• All 𝑚𝑖 new pages lead to page faults (when they are requested
for the first time)

• When requested for the first time, an old page leads to a page
fault, if the page was evicted in one of the previous page faults

• We need to count the number of page faults for old pages

𝒙
𝒙𝒚

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Page Faults per Phase

Phase 𝒊, 𝒋𝐭𝐡 old page that is requested (for the first time):

• There is a page fault if the page has been evicted

• There have been at most 𝑚𝑖 + 𝑗 − 1 distinct requests before

• The old places of the 𝑗 − 1 first old pages are occupied (marked)

• The other ≤ 𝑚𝑖 pages are at uniformly random places among the
remaining 𝑘 − 𝑗 − 1 places (oblivious adv.)

• Probability that the old place of the 𝑗th old page is taken:

≤
𝑚𝑖

𝑘 − (𝑗 − 1)

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Page Faults per Phase

Phase 𝒊 > 𝟏, 𝒋𝐭𝐡 old page that is requested (for the first time):

• Probability that there is a page fault:

≤
𝑚𝑖

𝑘 − (𝑗 − 1)

Number of page faults for old pages in phase 𝒊: 𝑭𝒊

𝔼 𝐹𝑖 = ෍

𝑗=1

𝑘−𝑚𝑖

ℙ 𝑗th old page incurs page fault

≤ ෍

𝑗=1

𝑘−𝑚𝑖
𝑚𝑖

𝑘 − 𝑗 − 1
= 𝑚𝑖 ⋅ ෍

ℓ=𝑚𝑖+1

𝑘
1

ℓ

= 𝑚𝑖 ⋅ 𝐻 𝑘 − 𝐻 𝑚𝑖 ≤ 𝑚𝑖 ⋅ 𝐻 𝑘 − 1

𝐹𝑖𝑗 = 1 ⇔ 𝑗th old page incurs page fault ⇔ 𝔼 𝐹𝑖𝑗 = ℙ 𝐹𝑖𝑗 = 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2𝐻 𝑘 ≤ 2 ln 𝑘 + 2.

Proof:

• Assume that there are 𝑝 phases

• #page faults of rand. marking algorithm in phase 𝑖: 𝐹𝑖 +𝑚𝑖

• We have seen that
𝔼 𝐹𝑖 ≤ 𝑚𝑖 ⋅ 𝐻 𝑘 − 1 ≤ 𝑚𝑖 ⋅ ln 𝑘

• Let 𝐹 be the total number of page faults of the algorithm:

𝔼 𝐹 ≤෍

𝑖=1

𝑝

𝔼 𝐹𝑖 +𝑚𝑖 ≤ 𝐻 𝑘 ⋅෍

𝑖=1

𝑝

𝑚𝑖

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2𝐻 𝑘 ≤ 2 ln 𝑘 + 2.

Proof:

• Let 𝐹𝑖
∗ be the number of page faults in phase 𝑖 in an opt. exec.

• Phase 1: 𝑚1 pages have to be replaced  𝐹1
∗ ≥ 𝑚1

• Phase 𝑖 > 1:

– Number of distinct page requests in phases 𝑖 − 1 and 𝑖: 𝒌 +𝒎𝒊

– Therefore, 𝑭𝒊−𝟏
∗ + 𝑭𝒊

∗ ≥ 𝒎𝒊

• Total number of page faults 𝐹∗:

𝐹∗ =෍

𝑖=1

𝑝

𝐹𝑖
∗ ≥

1

2
⋅ 𝐹1

∗ +෍

𝑖=2

𝑝

𝐹𝑖−1
∗ + 𝐹𝑖

∗ ≥
1

2
⋅෍

𝑖=1

𝑝

𝑚𝑖

≥ 𝑚1 ≥ 𝑚𝑖

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Competitive Ratio

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2𝐻 𝑘 ≤ 2 ln 𝑘 + 2.

Proof:

• Randomized marking algorithm:

𝔼 𝐹 ≤ 𝐻 𝑘 ⋅෍

𝑖=1

𝑝

𝑚𝑖

• Optimal algorithm:

𝐹∗ ≥
1

2
⋅෍

𝑖=1

𝑝

𝑚𝑖

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Randomized Lower Bound

Yao’s Principle (more precisely Yao’s Minimax Principle):

exp. cost of best randomized alg. for worst-case input

≥
exp. cost of best deterministic alg. for a given random input distr.

Proving a lower bound using Yao’s principle:

• Design a random input distribution

• Show that every deterministic algorithm has a bad expected
competitive ratio if the input is chosen at random according to
this distribution

• Yao’s principle then implies that every randomized algorithm is
at least equally bad for a fixed worst-case input
– worst-case fixed input: holds even for oblivious adversary

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Randomized Paging Lower Bound

Input Distribution

• There are 𝑘 + 1 different pages in the slow memory

• In each step, a uniformly random page is requested

Deterministic Online Algorithms

• Consider some request 𝑖
– Current state of the fast memory depends on requests 𝑖 − 1 and on

the algorithm, assume that page 𝑝 is not in fast memory

– ℙ page fault = ℙ request for page 𝑝 =
1

𝑘+1

• Expected #page faults after 𝑛 requests:
𝑛

𝑘 + 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

Randomized Paging Lower Bound

Best Offline Algorithm: Longest Forward Distance

• After each page fault, optimal offline algorithm loads the page
that will not be used for the longest possible time

• After a page fault, all 𝑘 + 1 pages are requested at least once
before the next page fault

Claim: If 𝑇 = time to request each page once, then
𝔼 𝑻 = 𝒌 + 𝟏 ⋅ 𝑯 𝒌 + 𝟏

• Probability for req. 𝑖𝑡ℎ page after requesting 𝑖 − 1 diff. pages:

𝑝𝑖 =
𝑘 + 1 − 𝑖 − 1

𝑘 + 1

time between two page faults
=

time to request each page at least once −𝟏

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Randomized Paging Lower Bound

Claim: If 𝑇 = time to request each page once, then
𝔼 𝑻 = 𝒌 + 𝟏 ⋅ 𝑯 𝒌 + 𝟏

• Prob. for req. 𝑖𝑡ℎ page after req. 𝑖 − 1 diff. pages: 𝑝𝑖 =
𝑘+1−(𝑖−1)

𝑘+1

• For 𝑖 ∈ {1,… , 𝑘 + 1}: 𝑇𝑖 time to request 𝑖𝑡ℎ page after
requesting 𝑖 − 1 different pages

𝑻 = 𝑻𝟏 +⋯+ 𝑻𝒌+𝟏 ∶ 𝔼 𝑇 = 𝔼 𝑇1 +⋯+ 𝔼 𝑇𝑘+1

𝑻𝒊 ∼ 𝐆𝐞𝐨𝐦 𝒑𝒊 ⟹ 𝔼 𝑇𝑖 =
1

𝑝𝑖
=

𝑘 + 1

𝑘 + 1 − (𝑖 − 1)

𝔼 𝑇 = ෍

𝑖=1

𝑘+1

𝔼 𝑇𝑖 = 𝑘 + 1 ⋅ ෍

𝑖=1

𝑘+1
1

𝑘 + 1 − 𝑖 − 1

= 𝑘 + 1 ⋅ ෍

𝑗=1

𝑘+1
1

𝑗
= 𝑘 + 1 ⋅ 𝐻(𝑘 + 1)

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

Randomized Paging Lower Bound

Theorem: Every randomized paging algorithm has competitive ratio
at least 𝐻(𝑘) even for an oblivious adversary.

• Assume we 𝑘 + 1 pages and uniformly random page requests

• Consider the phase partition from before

• Optimal offline algorithm has exactly one page fault per phase.

• Expected length of a phase : 𝑘 + 1 ⋅ 𝐻 𝑘 + 1 − 1

• Expected number of page faults of any online algorithm per phase
is at least

𝑘 + 1 ⋅ 𝐻 𝑘 + 1 − 1

𝑘 + 1
= 𝐻 𝑘 + 1 −

1

𝑘 + 1
= 𝐻(𝑘)

• Now, the lower bound follows from Yao’s principle.

