Algorithm Theory

Chapter 9
Online Algorithms

Part Il:
Randomized Paging

Fabian Kuhn

UNI

FREIBURG

Randomized Algorithms

UNI
f

FREIBURG

* We have seen that deterministic paging algorithms cannot be
better than k-competitive

* Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

E[ALG(I)] < ¢ - OPT(I) + a.

 Ifa <0, wesay that ALG is strictly c-competitive.

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Adversaries

UNI
f

FREIBURG

* For randomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

* Has to determine the complete input sequence before the
algorithm starts

— The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:
* The input sequence is constructed during the execution

* When determining the next input, the adversary knows how the
algorithm reacted to the previous inputs

* Input sequence depends on the random behavior of the alg.
* Sometimes, two adaptive adversaries are distinguished

— offline, online : different way of measuring the adversary cost
Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Lower Bound

UNI

FREIBURG

The adversaries can be ordered according to their strength

oblivious < adaptive online < adaptive offline

* An algorithm that achieves a given comp. ratio with an
adaptive adversary is at least as good with an oblivious one

 Alower bound that holds against an oblivious adversary also
holds for the adaptive adversaries

Theorem: No randomized paging algorithm can be better than
k-competitive against an adaptive offline adversary.

Proof: The same proof as for deterministic algorithms works.

* For an adaptive online algorithm, a similar lower bound holds.

Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2019/20 Fabian Kuhn

The Randomized Marking Algorithm

UNI

FREIBURG

e Every entry in fast memory has a marked flag

 Initially, all entries are unmarked.
e |If a pagein fast memory is accessed, it gets marked

 When a page fault occurs:

— If all k pages in fast memory are marked,
all marked bits are setto 0

— The page to be evicted is chosen uniformly at random
among the unmarked pages

— The marked bit of the new page in fast memoryissetto 1

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI

Example

FREIBURG

Input Sequence (k=6):

3,53,96,829,5,7,1,2,5,2,3,7,4,8,1,2,7,5,3,6,9,6,10,4,1,2 ...
NG - N ANG "
phase 1 phase 2 phase 3 phase 4

Fast Memory:

1006 | 1 9|4 2

Observations:

* At the end of a phase, the fast memory entries are exactly the k
pages of that phase

e Atthe beginning of a phase, all entries get unmarked
* f#fpage faults depends on #new pages in a phase

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

UNI

Page Faults per Phase

FREIBURG

Consider a fixed phase i:

* Assume that of the k pages of phase i, m; are new and k — m;
are old (i.e., they already appear in phase i — 1)

* All m; new pages lead to page faults (when they are requested
for the first time)

* When requested for the first time, an old page leads to a page
fault, if the page was evicted in one of the previous page faults

Y

y

 We need to count the number of page faults for old pages

X

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Page Faults per Phase

UNI
f

FREIBURG

Phase i, j'" old page that is requested (for the first time):

There is a page fault if the page has been evicted
There have been at most m; + j — 1 distinct requests before
The old places of the j — 1 first old pages are occupied (marked)

The other < m; pages are at uniformly random places among the
remaining k — (j — 1) places (oblivious adv.)

Probability that the old place of thejth old page is taken:
m.

< i
Ck=0-D

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

UNI
f

FREIBURG

Page Faults per Phase

Phase i > 1,jth old page that is requested (for the first time):

* Probability that there is a page fault:
m;

< ,
k—(G—1)
Number of page faults for old pages in phase i: F;
Fij=1 & j™ old page incurs page fault IE[FL-]-] = [P(Fl-j = 1)

k—m;
E|F;] = z IP’(]th old page incurs page fault)
k ml
< —_—
= 2 I — (]—1) - 2 ?

f=m;+1

(H(k) H(ml)) = m; - (H(k) o 1)

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Competitive Ratio

UNI
FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H (k) < 21In(k) + 2.

Proof:
* Assume that there are p phases

* Hpage faults of rand. marking algorithm in phase i: F; + m;

* We have seen that

* Let F be the total number of page faults of the algorithm:

p p
BIF) <) (BIF]+m) <H(O-) m,
i=1 =1

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Competitive Ratio

UNI
FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H (k) < 2In(k) + 2.

Proof:
* Let F;" be the number of page faults in phase i in an opt. exec.

* Phase 1: m, pages have to be replaced 2 F; > m,

* Phasei > 1:
— Number of distinct page requests in phasesi — 1 and i: k + m;
— Therefore, F;_{ + F; > m

* Total number of page faults F*:

p
1
zF > <F1+ (Fl1+F)>2§ Zmi
=1
= my > m;

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Competitive Ratio

|
FRE:BURG

UNI

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H (k) < 21In(k) + 2.

Proof:
* Randomized marking algorithm:

p
F]SH(k)-;mi
p
Fzgym

=1

 Optimal algorithm:

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Randomized Lower Bound

UNI

FREIBURG

Yao’s Principle (more precisely Yao’s Minimax Principle):
exp. cost of best randomized alg. for worst-case input
=

exp. cost of best deterministic alg. for a given random input distr.

Proving a lower bound using Yao’s principle:
* Design a random input distribution

* Show that every deterministic algorithm has a bad expected
competitive ratio if the input is chosen at random according to
this distribution

* Yao’s principle then implies that every randomized algorithm is
at least equally bad for a fixed worst-case input

— worst-case fixed input: holds even for oblivious adversary

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

UNI

Randomized Paging Lower Bound

FREIBURG

Input Distribution
 There are k + 1 different pages in the slow memory
* In each step, a uniformly random page is requested

Deterministic Online Algorithms

 Consider some request i
— Current state of the fast memory depends on requests i — 1 and on
the algorithm, assume that page p is not in fast memory

— P(page fault) = P(request for page p) = ﬁ

* Expected #page faults after n requests:
n

k+1

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

UNI
FREIBURG

Randomized Paging Lower Bound

Best Offline Algorithm: Longest Forward Distance

* After each page fault, optimal offline algorithm loads the page
that will not be used for the longest possible time

« After a page fault, all k + 1 pages are requested at least once
before the next page fault

time between two page faults

time to request each page at least once —1

Claim: If T = time to request each page once, then
EIT|=(k+1)-Hk+ 1)

* Probability for req. it" page after requesting i — 1 diff. pages:
B k+1—-—(i—1)
Pi = k+1

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

Randomized Paging Lower Bound

UNI
f

FREIBURG

Claim: If T = time to request each page once, then
EIT|]=(k+1)-Hk+1)

* Prob. for req. it" page after req. i — 1 diff. pages: p; = k+1k_ﬁ_1)

* Fori€{1,..,k+ 1}: T; time to request i‘" page after
requesting i — 1 different pages
1 k+1
p; k+1-(i—1)
T=T1+ + Ty E[T] =E[T]+ + E[Tiy4]
k+1 k+1

T; ~ Geom(p;) = E[T;] =

1
IE[T]=;IE[TL']=(k+1)';k+1—(i—1)
k+1

1
=(k+1)- Y ==(+1)-Hk +1)

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Randomized Paging Lower Bound

UNI
f

FREIBURG

Theorem: Every randomized paging algorithm has competitive ratio
at least H (k) even for an oblivious adversary.

 Assume we k + 1 pages and uniformly random page requests

* Consider the phase partition from before
* Optimal offline algorithm has exactly one page fault per phase.
 Expectedlengthofaphase:(k+1)-H(k+1)—1

 Expected number of page faults of any online algorithm per phase
is at least

(k+1)-Hk+1)—1 1
— = Hk+1) = === H(®)

* Now, the lower bound follows from Yao’s principle.

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

