Exercise 1: Vertex Cover Variant \hspace{1cm} (10 Points)

Given an undirected graph \(G = (V, E) \), a subset \(U \subseteq V \) of nodes and a capacity function \(c : U \to \mathbb{N} \), we want to cover every edge with the nodes in \(U \), where every node \(u \in U \) can cover up to \(c(u) \) of its incident edges.

Formally, we are interested in the existence of an assignment \(f : E \to U \) such that for all \(e \in E \) we have \(f(e) \in e \) and for all \(u \in U \) it holds \(|\{ e \in E \mid f(e) = u \}| \leq c(u) \).

Devise an efficient algorithm to determine whether or not such an assignment exists and explain its runtime.

Sample Solution

We formulate the problem as a flow problem. We flow-network looks as follows: We have a source node \(s \), a target node \(t \), one node for each \(u \in U \) and one node for each \(e \in E \). We have the following edges:

- An edge from \(s \) to each \(u \in U \) with capacity \(c(u) \)
- For any \(e = \{u, v\} \in E \) an edge from \(u \) to \(e \) and one from \(v \) to \(e \) with capacity 1 each (or any integer capacity \(\geq 1 \))
- An edge from each \(e \in E \) to \(t \) with capacity 1

The problem is solvable iff the maximum flow equals \(m = |E| \).

The network has integer capacities, the maximum flow is at most \(m \) and the network has \(O(m) \) edges, so computing a maximum flow with Ford-Fulkerson takes \(O(m^2) \).

Exercise 2: Cycle Elimination \hspace{1cm} (10 Points)

Let \(G = (V, E, c) \) be a directed graph with capacity function \(c : E \to \mathbb{N} \) and let \(s, t \in V \). We allow \(G \) to contain cycles. We now want to build a DAG (directed acyclic graph) \(G' = (V, E', c') \) with \(E' \subseteq E \) and \(c'(e) = c(e) \) for \(e \in E' \) (i.e., we obtain \(G' \) by deleting edges from \(G \)) that has the same minimum \(s \)-\(t \) cut capacity as \(G \).

Give an efficient algorithm to compute such a graph \(G' \), argue that your algorithm is correct and analyze its runtime.
Sample Solution

We compute a maximum s-t flow of G. Assume there is a flow going along a cycle Z. Let $e \in Z$ be the edge with the smallest flow value among all edges in Z. We set the flow on e to 0 and reduce the flow on all other edges in Z by the corresponding amount. This way, we obtain a valid flow in G of the same size without any flow going along cycles. We now obtain G' by deleting all edges from G with a flow value of 0. G' is a DAG with the same maximum s-t flow and hence the same minimum s-t cut capacity as G.

Computing a flow on G takes $O(m \cdot C)$ where C is the size of a minimum cut in G. Finding a “flow cycle” and changing the flow in it takes $O(m)$. After $O(m)$ iterations, all such cycles are eliminated. The total runtime is hence $O(m \cdot C + m^2)$.