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Task 1: Basic Mathematical Skills (10 Points)

1. A tree is a simple, connected graph without cycles. Show that a tree with n nodes has
n− 1 edges. (5 Points)

Hint: You may use that a tree has at least one leaf, i.e., a node of degree one.

2. Let T1 = (V,E1), T2 = (V,E2), ..., Tk = (V,Ek) be k trees on the same set of vertices V
of size n (assume that n is even). Let G = (V,E1 ∪ E2 ∪ . . . ∪ Ek) be the union of these
trees. Show that more than half of the nodes of G have degree at most 4k in G. (5 Points)

Sample Solution

1. Induction over the number of nodes:

Induction base: A tree with 1 node has 0 edges.

Induction step: Assume the statement holds for n. Let T be a tree with n + 1 nodes. Let
v be a leaf of T and T ′ := T \ {v}. Then T ′ is a tree with n nodes and has by assumption
n− 1 edges. As v is a leaf (i.e., has only one incident edge), it follows that T has n edges.

2. By the previous exercise we know that G has at most k(n − 1) edges. However, if half
the nodes or more have degree at least 4k there would be at least 1

2
n
2
4k = nk edges, a

contradiction.
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Task 2: Regular Languages (19 Points)

1. Let Σ = {a, b, . . . , z} be the set of letters from the English alphabet. LetL be the language
over Σ consisting of all words that appear in the book “Harry Potter and the Chamber of
Secrets”. Is L regular? Explain your answer in one sentence. (2 Points)

2. Let Σ = {a, b}. Let L1 be the language defined by the regular expression a∗b∗a∗ and L2

the language defined by a∗b∗b. (7 Points)

Draw a DFA for L1, L2, and L1 \ L2 := {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

3. Show that if L and L′ are regular languages over some alphabet Σ, then also L \ L′ is
regular. (3 Points)

4. Use the pumping lemma to show that L = {w ∈ {a, b}∗ | w contains more a’s than b’s}
is not regular. (7 Points)

Sample Solution

1. Yes, finite languages are regular.

2.
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3. Let L and L′ be regular languages. We have

L \ L′ = L ∩ L′ = L ∪ L′ .

As regular languages are closed under union and complement, L \ L′ is also regular.
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4. Assume L was regular and p the pumping length. Consider the word s = apbp−1 ∈ L.
Then there are x, y, z such that s = xyz, |y| > 0, |xy| ≤ p and xy0z = xz ∈ L. From
|xy| ≤ p it follows that y only consists of a’s. As |y| > 0, xz has at most as many a’s as
b’s and is therefore not contained in L, a contradiction.
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Task 3: Context-Free Languages (10 Points)

Give a context-free grammar that generates the language

{aibjck | i = j or j = k where i, j, k ≥ 0} .

Hint: It is maybe helpful to remember that context-free languages are closed under union.

Sample Solution

S → S1 | S2

S1 → DC

D → aDb | ε

C → Cc | ε

S2 → AE

E → bEc | ε

A→ Aa | ε
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Task 4: Decidability (14 Points)

1. Show that A = {〈R, S〉 | R and S are regular expressions and L(R) ⊆ L(S)} is decid-
able. (8 Points)

2. Show that EQTM = {〈M1,M2〉 | M1,M2 are Turing Machines and L(M1) = L(M2)} is
undecidable. (6 Points)

Hint: You may use that ETM = {〈M〉 | M is a Turing Machine and L(M) = ∅} is
undecidable.

Sample Solution

1. Let T be the Turing Machine deciding the language {〈D〉 | D is a DFA with L(D) = ∅}
(known from the lecture). We have L(R) ⊆ L(S)⇔ L(R)\L(S) = ∅. Thus we construct
a decider for A in the following way:

On input 〈R, S〉 where R, S are regular expression:

• Convert R and S into equivalent DFAs (like in the lecture)

• Construct a DFA D for the regular language L(R) \ L(S) = L(R) ∪ L(S)

• Run T on input 〈D〉. Accept iff T accepts.

2. Assume we had a TM R that decides EQTM . We construct a decider for ETM :

On input 〈M〉 where M is a TM:

• Construct a TM B that rejects all inputs.

• Run R on 〈M,B〉. Accept iff R accepts.
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Task 5: O - Notation (10 Points)

State whether the following claims are true or false (1 point each). Then prove or disprove the
claim. Use the definition of the O-notation.

1. (lnn)2 ∈ O (ln(n2)) (1+4 Points)

2. 3n2 + 8n ∈ O (n2) (1+4 Points)

Sample Solution

1. The claim is false. For any c > 0, there is a n0 such that lnn > 2c for all n ≥ n0 which
implies that (lnn)2 = lnn · lnn > 2c lnn = c lnn2 for all n ≥ n0.

2. The claim is true. Choose c = 11. Then for all n ≥ 1 we have n ≤ n2 and thus
3n2 + 8n ≤ 3n2 + 8n2 = 11n2
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Task 6: Complexity (12 Points)

Given a set U of n elements (’universe’) and a collection S ⊆ P(U) of subsets of U , a selection
C1, . . . , Ck ∈ S of k sets is called a set cover of (U, S) of size k if C1 ∪ . . . ∪ Ck = U .

Show that the problem

SETCOVER :={〈U, S, k〉 |U is a set, S ⊆ P(U) and there is a set cover of (U, S) of size k}

is NP-complete.

You may use that

DOMINATINGSET = {〈G, k〉 | G has a dominating set with k nodes}.

is NP-complete. A subset of the nodes of a graph G is a dominating set if every other node of G
is adjacent to some node in the subset.

Sample Solution

SETCOVER is in NP: Guess a collection C1, . . . , Ck ∈ S of k sets from S. Go through all
elements of U and check if it is in one of the Ci. This takes polynomial time.

SETCOVER is NP-hard: We reduce DOMINATINGSET to SETCOVER. Let G = (V,E) be a
graph and k an integer. We define a SETCOVER instance in the following way: We choose V
to be the universe, i.e., U = V and S := {ΓG(v) | v ∈ V }. This conversion takes polynomial
time. Then ΓG(v1), . . . ,ΓG(vk) is a set cover of (U, S) iff v1, · · · , vk is a dominating set of G.
Hence, 〈U, S, k〉 ∈ SETCOVER iff 〈G, k〉 ∈ DOMINATINGSET.
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Task 7: Logic (15 Points)

1. Consider the following propositional formula

ψ := (x ∨ y → ⊥) ∧ (z → x ∧ w) ∧ (y ∨ z).

Either find a satisfying assignment for ψ or use the resolution calculus to show that ψ is
unsatisfiable. (9 Points)

2. Consider the following first order logical formulae

ϕ1 := ∀x ¬R(x, x)

ϕ2 := ∀x∀y (x 6= y → R(x, y) ∨R(y, x))

ϕ3 := ∃x∀y (x 6= y → R(x, y))

where x, y are variable symbols and R is a binary predicate. Give an interpretation

(a) I1 which is a model of ϕ1 ∧ ϕ2 ∧ ϕ3. (3 Points)

(b) I2 which is a model of ϕ1 ∧ ϕ2 ∧ ¬ϕ3. (3 Points)

Remark: No proof required.

Sample Solution

1. ψ is unsatisfiable. ψ is equivalent to ¬x ∧ ¬y ∧ (¬z ∨ x) ∧ (¬z ∨ w) ∧ (y ∨ z) which is
equivalent to the knowledge base {{¬x}, {¬y}, {¬z, x}, {¬z, w}, {y, z}}.

{¬x}, {¬z, x} `R {¬z}
{¬y}, {y, z} `R {z}
{¬z}, {z} `R 2

2. (a) Take I1 := (N, RI1) where RI1(x, y) :⇔ x <N y.

(b) Take I2 := (Z, RI1) where RI1(x, y) :⇔ x <Z y.
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