Algorithms and Datastructures Summer Term 2022
 Exercise Sheet 11

Due: January 18th, 12pm

Exercise 1: Bitstrings without consecutive ones

(10 Points)

Given a positive integer n, we want to compute the number of n-digit bitstrings without consecutive ones (e.g., for $n=3$ this number is 5 , as $000,001,010,100,101$ are the 3 -digit bitstrings without consecutive ones).
(a) Give an algorithm which solves this problem in time $\mathcal{O}(n)$. Explain the runtime.
(b) Implement your solution. You may use the template DP.py. Run your algorithm on the values 10,20 und 50 and write your results in erfahrungen.txt.
(5 Points)

Exercise 2: Partitioning

Given a set $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ with $x_{i} \in \mathbb{N}$, we want to determine whether there is a subset $S \subseteq X$ such that $\sum_{x \in S} x=\sum_{x \in X \backslash S} x$ (it is not necessary to compute S).
(a) Let $W:=\sum_{x \in X} x$. Give a recursive formula $s:\{0, \ldots, n-1\} \times\{0, \ldots, W\} \rightarrow\{$ True, False $\}$ such that $s(i, j)=$ True if and only if there is a $S \subseteq\left\{x_{0}, \ldots, x_{i}\right\}$ such that $\sum_{x \in S} x=j$. Explain how s can be used to solve the above problem in time $\mathcal{O}(W \cdot n)$.
(5 Points)
(b) Implement your solution. You may use the template DP.py. Run your algorithm on the sets given in set1.txt, set2.txt and set3.txt and write your results to erfahrungen.txt (5 Points)

