Algorithms and Data Structures
Conditional Course

Lecture 3

Abstract Data Types,
Simple Data Structures, Binary Search

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity

Data Structures

Algorithms
* How to solve a given problem efficiently?
* Goal: smallest possible complexity

— small runtime / small memory usage
— asymptotically, dependent on the problem size

Data Structures

e How to save data such that the access becomes as efficient as
possible?

 Depends on the types of operations we have to support!
* Good data structures necessary to obtain fast algorithms

* One needs fast algorithms to carry out data structure operations
optimally

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types

Abstract Data Type:
» Specification which kind of data one can support

» Specification of the operations to access the data
— including the semantics of the operations

Data Structure:
* A concrete way of implementing an abstract data type

 Depending on the implementation, the same operations might
have different runtimes (complexities)

We will now first briefly discuss the most important
abstract data types...

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Examples

Array:
* holds a collection of elements (of the same type)

Operations:

 create(n) :createsan array of lengthn

e A.get(i) : returns the element at position i

 A.sset(x, i) :writes element x to position i

e A.size() : returns the length of the array (not always available)

For dynamic arrays (can change size):
 A.append(x) :appendselement x at the end
* A.deletelLast() : deletes last element

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Examples

Dictionary: (also: maps, associative arrays)

* holds a collection of elements where each element is represented
by a unique key

Operations:
* create . creates an empty dictionary

* D.insert(key, value) :inserts a new (key,value)-pair
— If there already is an entry with the same key, the old entry is replaced

* D.find(key) : returns entry with key key

— If there is such an entry (returns some default value otherwise)

e D.delete(key) . deletes entry with key key

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Examples

Dictionary:

Additional possible operations:

e D.minimum()
e D.maximum()
e D.successor(key)
» D.predecessor(key) -
 D.getRange(kl, k2)

Fabian Kuhn

: returns smallest key in the data structure
: returns largest key in the data structure
: returns next larger key

returns next smaller key

returns all entries with keys in the interval
[k1,k2]

Algorithms and Data Structures

Abstract Data Types: Examples

Queue:

* Holds a collection (sequence) of elements

Operations:

* create . creates an empty queue

 Q.enqueue(x) :appendselement x at the end

 Q.dequeue() :returnselement at front element and removes it
 Q.isEmpty() . |Is the queue empty?

Is also called FIFO queue (FIFO = first in first out)
tail head

l l ﬁ dequeue
enqueue /7:>

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Examples
Stack:

* Holds a collection (sequence) of elements

) ush pop
Operations: P top
* create : creates an empty stack l f
 S.push(x) :putsan element x on the stack 42
e S.pop() : returns and deletes top element
12
of stack
e S.isEmpty() :lsthe stack empty? 4
23

Is also called LIFO queue (LIFO = last in first out)

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Examples

Heap / Priority Queue :

Holds a collection of (key,value) pairs

Operations:

create() : creates an empty heap
H.insert(x, key) :inserts element x with key key
H.getMin() : returns element with smallest key

H.deleteMin() :deletes element with smallest key
— H.getMin() and H.deleteMin() have to be consistent

H.decreaseKey(x, newkey) :If newkey is smaller than the current
key of x, the key of x is set to newkey

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Examples

Union-Find / Disjoint Sets:

* Manages a partition of elements

Operationen:

e create()

 U.makeSet(x)

* U.find(x)

 U.union(S1, S2)

Fabian Kuhn

x)

: creates an empty union-find data structure

: adds a set {x} to the partition

: returns the set containing element x
: unites sets S1 and S2 toset S1 U 52

®)

x3)

xs)

Algorithms and Data Structures

Array Implementation of Stack

Let us try to implement the stack data type
* Operations: create, push, pop, isEmpty
* Assumption: Stack only needs to be able to hold NMAX elements

Variables to store the state of the stack:
e stack : array of length NMAX
e size :current number of elements in stack

create():

stack = new array of length NMAX
size = 0

Fabian Kuhn Algorithms and Data Structures

Array Implementation of Stack

isEmpty():
return (size == 0) 0
S.push(x): 7]13]3
if (size < NMAX):
stack[size] = x
size += 1
S.pop():
if (size == 0):
report error (or return default value)
else:
size -=1

Fabian Kuhn

NMAX-1

42

return stack[size]

Algorithms and Data Structures

12

Analysis: Array Implementation of Stack

Runtime (complexity) of the operations:
* create: 0(1)

— If we assume that memory can be allocated in O(1) time

* push: 0(1)

* pop: 0(1)
* isEmpty: 0(1)

Disadvantages of the implementation:
* Memory usage (space complexity) : O(NMAX)

— always needs the same amount of memory, no matter how many elements
there are on the stack!

* The stack can only hold NMAX elements...
 We will see that both these things can be fixed...

Fabian Kuhn Algorithms and Data Structures

Stack : Applications

* Reversing a sequence:

A, B, C

push(A), push(B), push(C), pop() = C, pop() — B, pop() = A

* Undo operation for editors:
— Put description of (reversible) edit operations on the stack

* Program stack for function / method calls
— Remark: With a stack, it is possible to write down recursion explicitly

Arguments and local
variables of function f,

def fi(x,y): def f,(a):

Arguments and local
variables of function f,

£ @) £,)

Arguments and local
variables of function f;

Fabian Kuhn

Algorithms and Data Structures

14

Array Implementation of Queue

Let us try to implement the queue data type
* Operations: create, enqueue, dequeue, isEmpty
* Assumption: Queue only needs to be able to hold NMAX elements

Variables to store the state of the queue:
* queue: array of length NMAX

 head : position of the first element (cyclic)
— if the queue is not empty.

e size :number of elementsin the queue

create:
queue = new array of length NMAX
head = 0

size 0

Fabian Kuhn Algorithms and Data Structures

Array Implementation of Queue

0 NMAX-1
Q 317 42 6 7
head head+size-1 size=5

(points to first
occupied position)

 Q.dequeue() returns element at pos. head, if Q is not empty
 Q.enqueue(x) inserts element at pos. head + size

e Array is used cyclically:

0 NMAX-1
Q 9 12 4 510 11 3 | 8
(head+size-1) mod NMAX head size=8

Fabian Kuhn Algorithms and Data Structures

Array Implementation of Queue

S.isEmpty():
return (size == 0)

S.enqueue(Xx):
if (size < NMAX)
pos = (head + size) mod NMAX
queue[pos] = X
size += 1

S.dequeue():
if (size == 0)

report error (or return default value)
else
X = queuel[head]

head = (head + 1) mod NMAX
size = size - 1
return Xx

Fabian Kuhn Algorithms and Data Structures

Analysis: Array Implementation of Queue

Runtime (complexity) of the operations:
* create: 0(1)

— If we assume that memory can be allocated in O(1) time

* enqueue: 0(1)
* dequeue: 0(1)
* isEmpty :0(1)

Disadvantages of the implementation:
* Memory usage (space complexity) : O(NMAX)

— always needs the same amount of memory, no matter how many elements
there are in the queue!

* The queue can only hold up to NMAX elements...
 We will see that both these things can be fixed ...

Fabian Kuhn Algorithms and Data Structures

Linked Lists

e Data structure to hold a list (sequence) of elements

Array:

Linked list:

/ next @—r———> next @—r———> next @————> next @—r—> J_

list

Doubly linked list:

— —
<« <«—o <«—o

Fabian Kuhn Algorithms and Data Structures 19

List Elements

e (Class to describe
list elements

Python:

class ListElement:

def init (self, key=0, data=None, next=None, prev=None):

self.key = key

self.data =
self.next =
self.prev =

Fabian Kuhn

data
next
prev

ListElement

key, data

next e—

«——o prev

Algorithms and Data Structures

20

List Elements

Class to describe
list elements

Java:

public class ListElement {

¥

int/String/.. key;
Object/.. data;

ListElement next;
ListElement prev;

Fabian Kuhn

ListElement

key, data

next e——

«——o prev

C++:

class ListElement {
public/private:

int/.. key;
void*/.. data;

ListElement* next;
ListElement* prev;

¥

Algorithms and Data Structures

21

Linked Lists: Structure

Singly Linked List:

31

next —m——>

Doubly Linked List:

I

first

31

next @o—m—>

null €—e prev

Fabian Kuhn

first

14

next ——>

14

next @o——m———>

-0 prev

10

next o——>

10

next @o——>

-0 prev

Algorithms and Data Structures

next &=—> null

Python:
C/ C++:
Java:

others:
symbol:

None
NULL
null
nil

1

next &=—> null

-0 prev

last

22

Stack and FIFO Queue with Lists

With singly linked lists, all operations in time O(1)

31 14 10 6

Stack:

next o——> next o——> next &—> next e&=—> null

I

top
 Elements can be added (push) und deleted (pop) at front

31 14 10 6

Queue:

next O———> next O———> next @———> next e&=—> null

I I

head tail

 enqueue: add element at end (tail) of list
 dequeue: delete element at front (head) of list

Fabian Kuhn Algorithms and Data Structures 23

Search in Linked Lists

Singly Linked List:

31

next —m——> next ——>

I

first

14

Goal: Find element with key x

current = first

while current != None and current.key != x:

current =

current.next

Runtime: List of lengthn : O(n)

Fabian Kuhn

10

next o——>

Algorithms and Data Structures

next &=—> null

24

Insertion in Singly Linked Lists

Insert y after x:

X

31 14 10

next o————> next ,——) next ©—

| y

first 42

next @<“——>

y.next = X.next
X.next =y

next ©—

—> null

Attention: Take care of special cases at beginning and end of list!

Fabian Kuhn

Algorithms and Data Structures

Insertion in Doubly Linked Lists

Insert y before x: y

31 14 10 6

next o———> next Jo——> next @———> next e&=—=—> null

prev €<———0 prev

S

I

first

null| €——e prev 0 pre\/ -
Yy
42
next

-9 prev

y.next = x
y.prev = Xx.prev
X.prev.next =y
X.prev =y

Attention: Take care of special cases at beginning and end of list!

Fabian Kuhn Algorithms and Data Structures 26

Deletion in Singly Linked Lists

Delete element x:

Yy X
31 14 10 6
next O——> next kw next &=———> null

first

Assumption: Predecessor element y is given

y.next = X.next

* In C++ one would also need to free the memory used by element x,
in Python / Java, this is done by the garbage collector

Attention: Take care of special cases at beginning and end of list!

Fabian Kuhn Algorithms and Data Structures 27

Deletion in Doubly Linked Lists

Delete element x: ”

31 14 10 6

next o———> next o4——> next e———> next e&=—=—> null

null€—e prev. = €——o prev w, prev

first last

X.nhext

X.prev.next
X.next.prev = x.prev

Attention: Take care of special cases at beginning and end of list!

Fabian Kuhn Algorithms and Data Structures 28

Runtime List Operations

Assumption: List of length n

Search for element with key x: O(n)

Insertion of an element: 0(1)

» if reference to predecessor is given, otherwise O(n)

Deletion of an element: 0(1)

e if ref. to predecessor (singly linked lists) or to element itself (doubly linked lists)
is given, otherwise O(n)

Concatenation of two lists: 0(1)
* if last pointer to first list is given

Stack and Queue with linked lists:
 all operations in time O(1)
* Size not restricted, memory usage 0(n)

Fabian Kuhn Algorithms and Data Structures

Lists with a Sentinel

Sentinel:

* Adummy element that form the start and end of the list

31

nil

next ©
—

14

next o—r———>

next o———>

10

next o————>

e listis accessed through nil.next instead of first

* replaces null pointer at the end of list
* empty list: sentinel points to itself (nil.next = nil)

6

next

e sentinel is just a part of the implementation and should
not be visible from outside

Fabian Kuhn

Algorithms and Data Structures

30

Lists with a Sentinel

Sentinel for doubly linked lists:

31 14 10 6

next o—r———> next @——————> next @—————> next 0\

prev <€<———0 prev €<———0 prev €<———0 prev

nil

next

prev -
—

» listis accessed through nil.next, nil.prev instead of first, last
* replaces null pointers at start and end of list

* resultsin a cyclic doubly linked list

 empty list: nil.next = nil , nil.prev = nil

Fabian Kuhn Algorithms and Data Structures

Sentinel : Remarks

Advantages:
* Avoids special cases at start / end of list when inserting / deleting
 Code becomes simpler and possibly also faster

* Null pointer exceptions are avoided ...
— Not clear to what extent this improves robustness ...

Disadvantages:

* In case of many small lists, the additional memory useage for the
sentinels might become relevant (never asymptotically)

e Sentinels make most sense if they really simplify the code

Fabian Kuhn Algorithms and Data Structures

Abstract Data Types: Dictionary

Dictionary: (also: maps, associative arrays, symbol tables)

* holds a collection of elements where each element is represented
by a unique key

Operations:
* create . creates an empty dictionary

* D.insert(key, value) :inserts a new (key,value)-pair
— If there already is an entry with the same key, the old entry is replaced

* D.find(key) : returns entry with key key

— If there is such an entry (returns some default value otherwise)

e D.delete(key) . deletes entry with key key

Fabian Kuhn Algorithms and Data Structures 33

Dictionary

* In a first phase, we deal with implementing the
basic operations insert, find, delete (und create)

Dictionary Examples:

* Dictionary (key: wort, value: definition / translation)
* Phone Book (key: name, value: phone number)
 DNS Server (key: URL, value: IP address)

 Python interpreter (key: variable name, value: value of variable)
Java/C++ compiler (key: variable name, value: type information)

In all these cases, it is particularly important to have
a fast find operation!

Fabian Kuhn Algorithms and Data Structures

Dictionary with Linked Lists

Operations:

* create:
— creates an empty list

* D.insert(key, value):
— inserts element at front
— Assumption: There is no previous entry with key key

* D.find(key):

— traverse list sequentially

* D.delete(key):
— first search the list element with key key (as in find)

— delete element from the list
— For singly linked list, one has to stop as soon as current.next.key == key !

Fabian Kuhn Algorithms and Data Structures

Dictionary with Linked Lists

Runtimes:
create: 0(1)

insert: 0(1)
* If one does not need to check if key is already present

find: O (n)
* We potentially have to iterate over the whole list

delete: O(n)
* We potentially have to iterate over the whole list

Is this good?
* |n particular find is very expensive!

Fabian Kuhn Algorithms and Data Structures

Dictionary with an Array

Operations:

* create:
— allocates a new array of size NMAX

* D.insert(key, value):
— inserts new element at end (if there still is space)
— Assumption: There is no previous entry with key key

* D.find(key):

— lterate over all the elements starting at front (or end)

* D.delete(key):

— first, search for key
— delete element from array, then:

Move all elements after the deleted element one position to the left!

Fabian Kuhn Algorithms and Data Structures

Dictionary with an Array
Runtimes:

create: 0(1)

insert: 0(1)

find: O(n)
* We potentially need to iterate over the whole array

delete: O(n)
* We potentially have to iterate over the whole array and might
need to copy A(n) elements

Better ideas?
* In particular find is still very expensive!

Fabian Kuhn Algorithms and Data Structures

Use a Sorted Array?

* Expensive operation for list / array, in particular find

e If (as soon as) the entries do not change too much, find
becomes the most important operation!

 Can we search for a given key faster if the entries in an array are
sorted by their keys?
— Example: Search phone number of a person in a phone book...

Ideas for searching x:

 We open the phone book approximately in the middle and check if
the name we look for in before or after that position.

y
sy<xorisy >xorisy = x?

Fabian Kuhn Algorithms and Data Structures

Binary Search

Use the divide-and-conquer ideal!

Search for the number (the key) 19:

2 3 4 6 9 12 15 16 17 18 19 20 24 27 29

Fabian Kuhn Algorithms and Data Structures

Binary Search

2 3 4 6 9 12 15 16 17 18 19 20 24 27 29

Algorithm (array A of length n, search for key x):

 Manage left and right boundary [und 7, s. t. (if x is contained in A)

All] < x < A[r]
e Atthe beginning, wesetl =0andr=n-1

 Gotothemidelem = (l+71)/2
— If Alm] = x = x found!
— IfAlm] <x = xisinrightpart =2 [=m+ 1

— IfA[m] >x = xisinleftpart = l=m—1

Fabian Kuhn Algorithms and Data Structures

Binary Search

2 3 4 6 9 12 15 16 17 18 19 20 24 27 29

Algorithm (array A of length n, search for key x):

1l =0;r

n - 1;

while r > 1 do
m=(1l+r)/ 2;
if A[m] < x then

l=m+ 1
else if A[m] > x then

else

If key x is in array, we have A[l] = x at end

Fabian Kuhn

r

1

m-1

m, r

m

Algorithms and Data Structures

Is the algorithm correct?

How can we verify this?
* Empirically: unit tests or more systematic tests...
* Formally?

— Correctness is (usually) even more important than performance!

Hoare Logic
 We only look at the basic ideas

* Precondition
— Condition that holds at the beginning (of a method / loop / ...)

* Postcondition
— Condition that holds at the end (of a method / loop / ...)

* Loop invariant
— Condition that holds at beginning and/or end of each loop iteration

Fabian Kuhn Algorithms and Data Structures

Is the algorithm correct?

1l =0; r=n-1;
while r > 1 do
m=(1l+r)/ 2;
if A[m] < x then 1 =m + 1
else if A[m] > x then r =m - 1
else 1 =m; r=m
Precondition
e array is sorted, array is of length n

Postcondition
* [f x is contained in array, then A[l] = x

Loop invariant
 If x is contained in array, then A[l] < x < A[r]

Fabian Kuhn Algorithms and Data Structures

44

Is the algorithm correct?

Precondition
* array is sorted, array is of length n

LR 1’\Ioopinvariant

Loop invariant
* [f x is contained in array, then A[l] < x < A[r]

* Precondition and assignment for [and r = loop invariant
— Loop invariant holds at beginning of first loop iteration

Postcondition
* [f x is contained in array, hen A[l] = x —
 Termination condition of while loop = [= r and thus A[l] = A[r]

e If x is contained in array, then the loop invariant and the fact that
Ais sorted imply that A[l] = A[r] and thus A[l] = x

Fabian Kuhn Algorithms and Data Structures 45

Is the algorithm correct?

1l =0; r=n-1;
while r > 1 do
m=(1l+r)/ 2;
if A[m] < x then 1 =m + 1
else if A[m] > x then r =m - 1
else 1 =m; r=m

Schleifeninvariante

 If x is contained in array, then A[l] < x < A[r]

— The loop invariant holds at the beginning of the loop, it can only be
invalidated if we change the variables [and r

— Ifwesetl = m+ 1, we know that A[m] < x; therefore, we afterwards
have A[m + 1] < x if x is contained in A.

— Analogously, if we set ¥ = m — 1, we know that A[m] > x; therefore, we
afterwards have x < A[m — 1] if x is contained in A.

Fabian Kuhn Algorithms and Data Structures 46

Does the algorithm terminate?

1l =0; r=n-1;
while r > 1 do
m=(1l+r)/ 2;
if A[m] < x then 1 =m + 1
else if A[m] > x then r =m - 1
else 1 =m; r=m

* Change of number of elements (r — [4+ 1) per iteration?

- l=m+1:

(m+1)+1< l+r+1 N _r—l+1
roun =T 2 T3 2

- r=m-—1:
r—1 r—I0l+1

me1—1+1< 3T 1 141= <
m =" -2 2

— Otherwise x is foundandr — [+ 1 becomes 1

Fabian Kuhn Algorithms and Data Structures

Runtime

Does the algorithm terminate?
e The number of active elements is at least halved in each iteration

* The algorithm terminates!

Runtime?
T(n) <T(|"/5])+c, T@) <c

T\ ¢T(2) +¢
s T(My)+ € 5 <

7 C
<1 ("8) +3c¢ ?@)

;'T(o pofogn s c (Mo 1)

—_—

N

Fabian Kuhn Algorithms and Data Structures 48

Runtime Binary Search

The algorithm terminates in time 0(logn2.
Tw) €T(Mp)Y A<, Tle <

‘6&“ Tw) < c(ﬁ@gszvﬂ
base . U= T(\\ < C(OH) = C v
S_LSE\‘ 2zl T(w g TR+ ¢

< (5 tl) re

;@s(jzm
= (s, n +1).

Fabian Kuhn Algorithms and Data Structures

49

Dictionary with Sorted Array

Operations:

* create:
— allocates new array of size NMAX

* D.find(key):

— search for key by using binary search

* D.insert(key, value):
— Search for key and insert element at the right position
— Insertion: All elements after the insertion have to move one to the right!

* D.delete(key):
— First search for key and remove the respective element
— Deletion: All elements after the deletion have to move one to the left!

Fabian Kuhn Algorithms and Data Structures

Dictionary with Sorted Array

Runtimes:
create: 0(1)
insert: O(n)
find: O(logn)
delete: O(n)

Can we make all operations fast?
* and find even faster?

Fabian Kuhn Algorithms and Data Structures

