Algorithms and Data Structures

Lecture 5

Hash Tables 2:
Hash Functions, Universal Hashing,
Rehash, Cuckoo Hashing

FREIBURG

Z
=)

Fabian Kuhn
Algorithms and Complexity

Hash Tables

Implements a Dictionary

 Manage a set of (key, value) pairs

e Main operations: insert, find, delete

/ Key Space \

.

(U possbile keys)

\

)

d
4

Fabian Kuhn

Algorithms and Data Structures

hash function "@jp © {8 i

size A

P}

L hash table of

U €

Hash Tables

We have seen so far:

efficient method to implement a dictionary

 All operations typically have running time U0 p

— If the hash functions are sufficiently random and can be evaluated
intime 0 p .

— The worst-case running time is somewhat larger, in every application of
hash tables, there will be some more expensive operations.

We will now see:

e How to choose a good hash function?

e What to do if the hash table becomes too small?

e How to implement hashing such that find always requires
time U (p).

Fabian Kuhn Algorithms and Data Structures

Good Hash Functions

How to choose a good hash functions?
What properties should a good hash function satisfy?

* |n principle, it should have the same properties as a random
function:
— Mapping is uniformly random (all hash values appear equally often)

— Mapping of different keys is independent
(not clear what exactly this means for a deterministic function)

e Usually, these conditions cannot be verified.

e |f something about the distribution of key values is known, this
knowledge can potentially be used.

e Luckily there are simple heuristics that work well in practice.

Fabian Kuhn Algorithms and Data Structures

Division Method

Choose hash function as 3
I(o) ol | "H

e Allvalues between Ttand & P appear equally often
— as far as this is possible

Advantages:

* Very simple function

e Asingle division A can be computed very fast

e Often works quite well, as long as & is chosen carefully...

Remarks:

e |f the keys are not integers, one can interpret the bit sequences
representing the keys as integers.

 Consecutive keys are mapped to consecutive hash values.

Fabian Kuhn Algorithms and Data Structures

Division Method

Choose hash function as

I(o) o i 1 "H

Choice of Divisor [

‘Qw could be computed particularly fastif & ¢

This is however no good choice because then the hash value is just
the last '(bits of the key!

— The hash value should depend on all the bits.

The best is to choose & as a prime number.

A prime number a forwhichd ¢ pisalso notideal.

Best: prime O that is not too close to a power of 2.

Fabian Kuhn Algorithms and Data Structures

Multiplication Method

Choose hash function as m owlod p

ko) IDi(=e |=4¢)

e 0 is aconstant between Ttand p

Remarks
e Here, one canchoose & ¢ (foran integer Q

e If integers are values Ttto C P, one typically picks an
integeri N pBhg p anddefines®0 i tc¢
0 bits

RN I

Fabian Kuhn Algorithms and Data Structures

Multiplication Method

Choose hash function as

ko) IDi=e |=4)]

e 0 is aconstant between Ttand p

Remarks
e Here, one canchoose & ¢ (foran integer Q
e If integers are values Ttto C P, one typically picks an

integeri ¥ pMB It p anddefinesd i t¢

— In principle every 0 works, in [Knuth; The Art of Comp. Progr. Vol. 3] it is
suggested to use
Vo p

c T pYPmo ooy P

5

Fabian Kuhn Algorithms and Data Structures

Random Hash Functions

If "Qis chosen randomly among all possible hash functions:

o DO (O6) 'de)) 2

a

and many other good properties ...
Problem:

e Such a function cannot be represented and implemented
efficiently.
— One essentially needs a table with an entry for each possible key

Idea:

e Choose a function at random from a smaller space
— E.g., use the multiplication method ") [& t(0 @ |0)| with a
random parameter O
* Not quite as good as a uniformly random hash function, but if it is
done correctly, the ideas works A universal hashing

Fabian Kuhn Algorithms and Data Structures

Universal Hashing : Idea

Hash functions: ID‘ O W

Key Space 7 " o
: vp . = > PositionsTd8 hat p
N T8 p J

Space of all possible hash functions

Ch] h that:
/possible hash functionh oose 2 stch tha

(no. functions: &) * |= |is not too large and the functions in =
are easy to implement

* Arandom function 'Qfrom = behaves
similarly to a uniformly random function
subset

D

e In particular regarding the collision prob.:

P

\\ / loho 00 Od0) W) -

Fabian Kuhn Algorithms and Data Structures

Universal Hashing : Definition

Definition:
* Let N be the set of possible keys and & be the size of the hash table
e Let= beasetof hashfunctionsn©® mB h p

The set D is called J-universal if
. . R .2
| ohe N * De {]*> Dke) k)3 %tlm—ls
e With other words, if ‘(s chosen at random from = , we have
§ . 0
bodwodM "'YDw w0 QQQ)) Qw)) o
e Remark:
Theset= ofalla possible hash functions is p-universal.

Fabian Kuhn Algorithms and Data Structures

Universal Hashing : List Lengths

Theorem:

Let = be a Quniversal set of hash functions N©° T8 M
Let ® O N be an arbitrary set of keys
Let ' ON = be arandom hash function from the set =

For a given WN @, let
6 h {o" ®DTw Qw}

In expectation, & hassize p f—

Therefore:

In expectation, all lists are short!

Fabian Kuhn Algorithms and Data Structures

P

Universal Hashing : Example |

The set D is called J”'=universal if

- . . b
lehe v " Do ¢« [{J*> DKe) O} %tlm—laa
Negative Example:

e Parametrized variant of the division method

= {QDw° Gitwl T & A pBhH p}
e Counterexample: choose an arbitrary wand choose ®w @

— Ty otol T A
—) ot a)I T A (@Wo ota)i T & otol T A

Fabian Kuhn Algorithms and Data Structures

Universal Hashing : Example Il

The set D is called J”'=universal if
. . o b
lehe v " Do ¢« [{J*> DKe) O} %tlm—laa

Positive Example 1:
e (@ arbitrary, N: prime such thatry 0
= {QDwo ((Otw i T AT T & AidNy nhid 1
holds for at most\
)
cilTg] e
diff. values of Q/

 The setis Guniversal firw pif N O

e For @ W we have Q) Ao, if for some Y ¥:
oI T A (Dol T A Qa
Ok Qat(w @ AT A
* For every wand wand for every) for each possible value of ‘QXthere
is only one value of & for which wand wcollide.

Fabian Kuhn Algorithms and Data Structures

Universal Hashing : Example Il

The set D is called J”'=universal if
. . . L2
lehe v " Do ¢« [{J*> DKe) O} %tlm—laa
Positive Example 2:

d 1M Qparameterd™ N B p

e O prime,
e Consider parameter wand key win basis-Q representation:

® O wtd ota E (I)'fé(<[(;)ﬁb.qnfﬁrﬂ p}

G o wtd eatd E ota
/ s |

= {"QDw° Otw |1 T A A£G B p}
\)

e Theset= is p-universal

Fabian Kuhn Algorithms and Data Structures

~"

Universal Hashing : Summary

e |f the hash function is chosen at random from a universal set of
hash functions, the collision probability for two keys wand wis
equal as for a random hash function.

e There are simple and efficient constructions of universal sets of
hash functions.

One can take this further:
e Pairwise independent set of hash functions

| cfon nR GRON ¥ D OG) 6 T & ai

— A random function from such a set behaves exactly the same as a random
function for every pair of keys ahro(not just regarding collisions)

. ""Qindependent set of hash functions

— A random function from such a set behaves exactly the same as a random
hash function for every set of (Mdifferent keys.

Fabian Kuhn Algorithms and Data Structures

Rehash

Remember:
e Load of a hash table:] €] &

What if a hash table becomes too full?

e Open Addressing:
— | p impossible, for| © p very inefficient

— If one inserts and deletes a lot, the table also becomes inefficient
(because of the deleted marks)

e Chaining: Complexity grows linearly with |

What it the chosen hash function behaves badly?

Rehash:
e Create a new, larger hash table, choose a new hash function Qee

e Insert all existing (key, value) pairs.

Fabian Kuhn Algorithms and Data Structures

Cost of Rehash

A rehash is expensive!

Cost (time):

e g a € :growslinearlyinthe number of inserted values and
in the length of the old hash table

— typically, thisis just g €

e |If done correctly, a rehash is rarely necessary:
— good hash function (e.g., from a universal set)

— good choice of table sizes:
with each rehash, the table size should be roughtly doubled

old size & newsize ¢ O

— With doubling, one gets constant time per hash table operation on average
A amortisierte Analyse

Fabian Kuhn Algorithms and Data Structures

Cost of Rehash

Analysis Doubling Strategy
e We make a few simplifying assumptions:
— Uptoload| (e.g.,] j) all hash table operations cost @

— Atload| , we double the table size:
old size &, new size ¢ ¢ cost wWtA .

— At the beginning, the table hassized N U p .
— The table size is never decreased...

e How large is the cost for rehashing, compared to the total cost of
all other operations?

Fabian Kuhn Algorithms and Data Structures

Cost of Rehash

Overall Cost

e We assume that the tablesizeis@ & t¢ for'Q p
— i.e., up to now, we have done 'Q p rehash steps
— remark: for Q Trthe rehash cost is still Tt

e The overall rehash cost is
wia t¢ ota (¢ p) ta

e Overall cost for the remaining operations
— Fortherehash fromsize | tosized wehad | t j entriesinthe table.

— Number of hash table operations (without rehash)

'y
—1ta
q

Fabian Kuhn Algorithms and Data Structures

Cost of Rehash

e The overall rehash cost is
wia t¢ ofa t(¢c p) ta

* Number of hash table operations:

M/ 0 —ta
G
* Average cost per operation
ME"Eqr N "Hi HET "I 71 "Hf jh |=
TE'E LI

e On average, the cost per operation is constant
— also for worst-case inputs (as long as the simplifying assumptions hold)
— average cost per operation = amortized cost per operation

Fabian Kuhn Algorithms and Data Structures

21

Amortized Analysis

Algorithm analysis so far:

worst case, best CasSe, daverage Case

Now additionaly amortized worst case:

¢ operations € 8 FE on some data structure, O : cost of ¢
Costs can be very different from each other (z.B.0 N pﬁ'f)'f 0
Amortized cost per operation

o~ o
‘Eh x EAQA 0o

Amortized cost: Average cost per operation in a worst-case
execution

— amortized worst case average case!

More on this in the algorithm theory lecture

Fabian Kuhn Algorithms and Data Structures

Amortized Analysis Rehash

* If one only increases the table size and assumes that for small
load, hash table operations require time U (p), the amortized cost
(time) per operationis0 p .

e Analysis also works for a random hash function from a universal
set of hash functions (with high probability)

— Then, for small load, hash table operations with high probability have
amortized cost 0 p .

 Analysis can be adapted for rehashs for decreasing the table size

— And also for cases where a rehash is necessary because of a lot of delete
operations (and the resulting deleted marks)

* In asimilar way, one can build dynamic-size arrays from fixed-size
arrays
— All array operations have U p amortized running time.
— ADT only allows increasing/decreasing size in 1-element steps at the end.

Fabian Kuhn Algorithms and Data Structures

Cuckoo Hashing Idea

Hashing Summary:
e Efficient dictionary data structure
e Qperations in expectation (usually) require U (p) time.

e Hashing with separate chaining can be implemented such that
insert always has running time U (p).

e (Can we also guarantee running time |= for find?

— if at the same time insert is only O (p) time in expectation...

Cuckoo Hashing Idea:

e Open addressing
— At each table position, there is only space for one entry.

e Two hash functions 'Q and 'Q

* Akey wis always stored at position Q @ or'Q w
— If both positions are occupied when inserting &) one has to reorganize...

Fabian Kuhn Algorithms and Data Structures

Cuckoo Hashing

Inserting a key e:
e Wis always inserted at position 'Q ()
* If there already is another key wat position Q w:

— Remove wfrom this position (thus the name cuckoo hashing)

— whas to be inserted at its alternative position
(if it was at pos. Q), it has to go to pos. Q , otherwise to pos. Q w)

— If there is already a key O at this position, remove O from there and place it
at its alternative position

— Andsoon..

Find / Delete:

e If Wis in the table, it is at position Q @ or Q w
 For delete: Mark table entry as empty!

e Both operations always require time 0 p !

Fabian Kuhn Algorithms and Data Structures

Cuckoo Hashing Example

Tablesize:a4 U

Hash functions: "Q (w)

ol T A, QW coplih

Insert keys p XC WX, p TIC TT

Keys:

Fabian Kuhn

T D q 9) T
28 Vo F AN |28)728 |0 10
;8/%’0 } 3{% \/]r

S—nx"—

]
% —
o X CY X oM QT

Algorithms and Data Structures

26

Cuckoo Hashing : Cycles

* When inserting, we can get a cycle
— wreplaces W
— W replaces W
— W replaces W

— W}, replaces t)y
— Wreplaces wor w forsome ' Q Jb

e Oritcan happen that for some key Q(w) Q w

* If this happens, we can also try the alternative position for & but
there the same can happen again...

* In this case, one chooses new hash functions and performs a
rehash (usually with a larger table).

Fabian Kuhn Algorithms and Data Structures

Cuckoo Hashing : Hash Functions

How to choose the two hash functions?

e They should be as “independent” as possible...
e Few keys wfor which Q(@) "Q w

e A good choice:

two independent, random functions from a universal set

e Then, one can show that cycles only occur rarely
aslongas&€ G fc.

e Assoon as the tableis half full (¢ & A¢), one should do a rehash
and switch to a table of twice the size.

Fabian Kuhn Algorithms and Data Structures

Cuckoo Hashing : Running Time

Find / Delete:

e Always running time U (p)

* One only has to inspect the two positions Q @ and Q .
e This is the big advantage of cuckoo hashing.

Insert:
e One can show that on average, it also requires time U (p)
e |f the table is not filled to more than half its size

 Doubling the table size when rehashing leads to constant average
running time per operation!

Fabian Kuhn Algorithms and Data Structures

Hashing Summary

Efficient method to implement a dictionary

Handling of Collisions

e Hashing with separate chaining
— simple, very flexible, with 2 hash functions, the list lengths can be restricted to
O(l 11QEQwith high probability
e QOpen Addressing
— different possibilities, more efficient in practice
— possible to implement such that find has worst-case time U (p).
— load| p impossible, if| becomes large, one has to do a rehash

Hash Functions

e There are simple strategies to obtain good hash functions.
— In practice, often, a single fixed hash function is used.

Rehash

e If a hash table becomes too full, one has to reset the whole table

— This can be done such that the average running time per operation is still
constant.

Fabian Kuhn Algorithms and Data Structures

