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Lecture 5

Hash Tables 2:
Hash Functions, Universal Hashing,
Rehash, Cuckoo Hashing
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Hash Tables

Implements a Dictionary

 Manage a set of (key, value) pairs

e Main operations: insert, find, delete
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Hash Tables

We have seen so far:

efficient method to implement a dictionary

 All operations typically have running time U0 p

— If the hash functions are sufficiently random and can be evaluated
intime 0 p .

— The worst-case running time is somewhat larger, in every application of
hash tables, there will be some more expensive operations.

We will now see:

e How to choose a good hash function?

e What to do if the hash table becomes too small?

e How to implement hashing such that find always requires
time U (p).
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Good Hash Functions

How to choose a good hash functions?
What properties should a good hash function satisfy?

* |n principle, it should have the same properties as a random
function:
— Mapping is uniformly random (all hash values appear equally often)

— Mapping of different keys is independent
(not clear what exactly this means for a deterministic function)

e Usually, these conditions cannot be verified.

e |f something about the distribution of key values is known, this
knowledge can potentially be used.

e Luckily there are simple heuristics that work well in practice.
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Division Method

Choose hash function as 3
I(o) ol | "H

e Allvalues between Ttand & P appear equally often
— as far as this is possible

Advantages:

* Very simple function

e Asingle division A can be computed very fast

e Often works quite well, as long as & is chosen carefully...

Remarks:

e |f the keys are not integers, one can interpret the bit sequences
representing the keys as integers.

 Consecutive keys are mapped to consecutive hash values.
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Division Method

Choose hash function as

I(o) o i 1 "H

Choice of Divisor [

‘Qw could be computed particularly fastif & ¢

This is however no good choice because then the hash value is just
the last '(bits of the key!

— The hash value should depend on all the bits.

The best is to choose & as a prime number.

A prime number a forwhichd ¢  pisalso notideal.

Best: prime O that is not too close to a power of 2.
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Multiplication Method

Choose hash function as m owlod p

ko) IDi(=e |=4¢)

e 0 is aconstant between Ttand p

Remarks
e Here, one canchoose & ¢ (foran integer Q

e If integers are values Ttto C P, one typically picks an
integeri N pBhg p anddefines®0 i tc¢
0 bits

RN I
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Multiplication Method

Choose hash function as

ko) IDi=e |=4)]

e 0 is aconstant between Ttand p

Remarks
e Here, one canchoose & ¢ (foran integer Q
e If integers are values Ttto C P, one typically picks an

integeri ¥ pMB It p anddefinesd i t¢

— In principle every 0 works, in [Knuth; The Art of Comp. Progr. Vol. 3] it is
suggested to use
Vo p

c T pYPmo ooy P
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Random Hash Functions

If "Qis chosen randomly among all possible hash functions:

o DO (O6)  'de)) 2

a

and many other good properties ...
Problem:

e Such a function cannot be represented and implemented
efficiently.
— One essentially needs a table with an entry for each possible key

Idea:

e Choose a function at random from a smaller space
— E.g., use the multiplication method ") [& t(0 @ |0 )| with a
random parameter O
* Not quite as good as a uniformly random hash function, but if it is
done correctly, the ideas works A universal hashing
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Universal Hashing : Idea

Hash functions: ID‘ O W

Key Space 7 " o
: vp . = > PositionsTd8 hat  p
N T8 p J

Space of all possible hash functions

Ch ] h that:
/possible hash functionh oose 2 stch tha

(no. functions: & ) * |= |is not too large and the functions in =
are easy to implement

* Arandom function 'Qfrom = behaves
similarly to a uniformly random function
subset

D

e In particular regarding the collision prob.:

P
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Universal Hashing : Definition

Definition:
* Let N be the set of possible keys and & be the size of the hash table
e Let= beasetof hashfunctionsn©® mB h p

The set D is called J-universal if
. . R .2
| ohe N * De {]*> Dke) k)3 %tlm—ls
e With other words, if ‘(s chosen at random from = , we have
§ . 0
bodwodM "'YDw w0 QQQ)) Qw)) o
e Remark:
Theset= ofalla possible hash functions is p-universal.
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Universal Hashing : List Lengths

Theorem:

Let = be a Quniversal set of hash functions N©° T8 M
Let ® O N be an arbitrary set of keys
Let ' ON = be arandom hash function from the set =

For a given WN @, let
6 h {o" ®DTw Qw}

In expectation, & hassize p f—

Therefore:

In expectation, all lists are short!
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Universal Hashing : Example |

The set D is called J”'=universal if

- . . b
lehe v " Do ¢« [{J*> DKe) O} %tlm—laa
Negative Example:

e Parametrized variant of the division method

= {QDw° Gitwl T & A pBhH p}
e Counterexample: choose an arbitrary wand choose ®w @

— Ty otol T A
— ) ot a)I T A (@Wo ota)i T & otol T A

Fabian Kuhn Algorithms and Data Structures



Universal Hashing : Example Il

The set D is called J”'=universal if
. . o b
lehe v " Do ¢« [{J*> DKe) O} %tlm—laa

Positive Example 1:
e (@ arbitrary, N: prime such thatry 0
= {QDwo ((Otw i T AT T & AidNy nhid 1
holds for at most\
)
cilTg] e
diff. values of Q/

 The setis Guniversal firw pif N O

e For @ W we have Q) Ao, if for some Y ¥:
oI T A (Dol T A Qa
Ok Qat(w @ AT A
* For every wand wand for every ) for each possible value of ‘QXthere
is only one value of & for which wand wcollide.
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Universal Hashing : Example Il

The set D is called J”'=universal if
. . . L2
lehe v " Do ¢« [{J*> DKe) O} %tlm—laa
Positive Example 2:

d 1M Qparameterd™ N B p

e O prime,
e Consider parameter wand key win basis-Q representation:

® O wtd ota E (I)'fé(<[(;)ﬁb.qnfﬁrﬂ p}

G o wtd eatd E ota
/ s |

= {"QDw° Otw |1 T A A£G B p}
\ )

e Theset= is p-universal
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Universal Hashing : Summary

e |f the hash function is chosen at random from a universal set of
hash functions, the collision probability for two keys wand wis
equal as for a random hash function.

e There are simple and efficient constructions of universal sets of
hash functions.

One can take this further:
e Pairwise independent set of hash functions

| cfon nR GRON ¥ D OG) 6 T & ai

— A random function from such a set behaves exactly the same as a random
function for every pair of keys ahro(not just regarding collisions)

. ""Qindependent set of hash functions

— A random function from such a set behaves exactly the same as a random
hash function for every set of (Mdifferent keys.
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Rehash

Remember:
e Load of a hash table:] €] &

What if a hash table becomes too full?

e Open Addressing:
— | p impossible, for| © p very inefficient

— If one inserts and deletes a lot, the table also becomes inefficient
(because of the deleted marks)

e Chaining: Complexity grows linearly with |

What it the chosen hash function behaves badly?

Rehash:
e Create a new, larger hash table, choose a new hash function Qee

e Insert all existing (key, value) pairs.
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Cost of Rehash

A rehash is expensive!

Cost (time):

e g a € :growslinearlyinthe number of inserted values and
in the length of the old hash table

— typically, thisis just g €

e |If done correctly, a rehash is rarely necessary:
— good hash function (e.g., from a universal set)

— good choice of table sizes:
with each rehash, the table size should be roughtly doubled

old size & newsize ¢ O

— With doubling, one gets constant time per hash table operation on average
A amortisierte Analyse
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Cost of Rehash

Analysis Doubling Strategy
e We make a few simplifying assumptions:
— Uptoload| (e.g.,] j ) all hash table operations cost @

— Atload| , we double the table size:
old size &, new size ¢ ¢ cost wWtA .

— At the beginning, the table hassized N U p .
— The table size is never decreased...

e How large is the cost for rehashing, compared to the total cost of
all other operations?
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Cost of Rehash

Overall Cost

e We assume that the tablesizeis@ & t¢ for'Q p
— i.e., up to now, we have done 'Q p rehash steps
— remark: for Q Trthe rehash cost is still Tt

e The overall rehash cost is
wia t¢ ota (¢ p) ta

e Overall cost for the remaining operations
— Fortherehash fromsize | tosized wehad | t j entriesinthe table.

— Number of hash table operations (without rehash)

'y
—1ta
q
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Cost of Rehash

e The overall rehash cost is
wia t¢ ofa t(¢c p) ta

* Number of hash table operations:

M/ 0 —ta
G
* Average cost per operation
ME"Eqr N "Hi HET "I 71 "Hf jh |=
TE'E LI

e On average, the cost per operation is constant
— also for worst-case inputs (as long as the simplifying assumptions hold)
— average cost per operation = amortized cost per operation
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Amortized Analysis

Algorithm analysis so far:

worst case, best CasSe, daverage Case

Now additionaly amortized worst case:

¢ operations € 8 FE on some data structure, O : cost of ¢
Costs can be very different from each other (z.B.0 N pﬁ'f)'f 0
Amortized cost per operation

o~ o
‘Eh x EAQA 0o

Amortized cost: Average cost per operation in a worst-case
execution

— amortized worst case  average case!

More on this in the algorithm theory lecture
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Amortized Analysis Rehash

* If one only increases the table size and assumes that for small
load, hash table operations require time U (p), the amortized cost
(time) per operationis0 p .

e Analysis also works for a random hash function from a universal
set of hash functions (with high probability)

— Then, for small load, hash table operations with high probability have
amortized cost 0 p .

 Analysis can be adapted for rehashs for decreasing the table size

— And also for cases where a rehash is necessary because of a lot of delete
operations (and the resulting deleted marks)

* In asimilar way, one can build dynamic-size arrays from fixed-size
arrays
— All array operations have U p amortized running time.
— ADT only allows increasing/decreasing size in 1-element steps at the end.
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Cuckoo Hashing Idea

Hashing Summary:
e Efficient dictionary data structure
e Qperations in expectation (usually) require U (p) time.

e Hashing with separate chaining can be implemented such that
insert always has running time U (p).

e (Can we also guarantee running time |= for find?

— if at the same time insert is only O (p) time in expectation...

Cuckoo Hashing Idea:

e Open addressing
— At each table position, there is only space for one entry.

e Two hash functions 'Q and 'Q

* Akey wis always stored at position Q @ or'Q w
— If both positions are occupied when inserting &) one has to reorganize...
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Cuckoo Hashing

Inserting a key e:
e Wis always inserted at position 'Q ()
* If there already is another key wat position Q w:

— Remove wfrom this position (thus the name cuckoo hashing)

— whas to be inserted at its alternative position
(if it was at pos. Q ), it has to go to pos. Q , otherwise to pos. Q w)

— If there is already a key O at this position, remove O from there and place it
at its alternative position

— Andsoon..

Find / Delete:

e If Wis in the table, it is at position Q @ or Q w
 For delete: Mark table entry as empty!

e Both operations always require time 0 p !
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Cuckoo Hashing Example

Tablesize:a4 U

Hash functions: "Q (w)

ol T A, QW coplih

Insert keys p XC WX, p TIC TT

Keys:
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Cuckoo Hashing : Cycles

* When inserting, we can get a cycle
— wreplaces W
— W replaces W
— W replaces W

— W}, replaces t)y
— Wreplaces wor w forsome ' Q Jb

e Oritcan happen that for some key Q(w) Q w

* If this happens, we can also try the alternative position for & but
there the same can happen again...

* In this case, one chooses new hash functions and performs a
rehash (usually with a larger table).
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Cuckoo Hashing : Hash Functions

How to choose the two hash functions?

e They should be as “independent” as possible...
e Few keys wfor which Q(@) "Q w

e A good choice:

two independent, random functions from a universal set

e Then, one can show that cycles only occur rarely
aslongas&€ G fc.

e Assoon as the tableis half full (¢ & A¢), one should do a rehash
and switch to a table of twice the size.
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Cuckoo Hashing : Running Time

Find / Delete:

e Always running time U (p)

* One only has to inspect the two positions Q @ and Q .
e This is the big advantage of cuckoo hashing.

Insert:
e One can show that on average, it also requires time U (p)
e |f the table is not filled to more than half its size

 Doubling the table size when rehashing leads to constant average
running time per operation!
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Hashing Summary

Efficient method to implement a dictionary

Handling of Collisions

e Hashing with separate chaining
— simple, very flexible, with 2 hash functions, the list lengths can be restricted to
O(l 11QEQwith high probability
e QOpen Addressing
— different possibilities, more efficient in practice
— possible to implement such that find has worst-case time U (p).
— load| p impossible, if| becomes large, one has to do a rehash

Hash Functions

e There are simple strategies to obtain good hash functions.
— In practice, often, a single fixed hash function is used.

Rehash

e If a hash table becomes too full, one has to reset the whole table

— This can be done such that the average running time per operation is still
constant.
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