Algorithms and Data Structures

Lecture 5

Hash Tables 2: Hash Functions, Universal Hashing, Rehash, Cuckoo Hashing

Fabian Kuhn Algorithms and Complexity

Hash Tables

Implements a Dictionary

- Manage a set of (key, value) pairs
- Main operations: insert, find, delete

52

We have seen so far:

efficient method to implement a dictionary

- All operations typically have running time $O(1)$
	- If the hash functions are sufficiently random and can be evaluated in time $\theta(1)$.
	- The worst-case running time is somewhat larger, in every application of hash tables, there will be some more expensive operations.

We will now see:

- How to choose a good hash function?
- What to do if the hash table becomes too small?
- How to implement hashing such that find always requires time $O(1)$.

How to choose a good hash functions?

What properties should a good hash function satisfy?

- In principle, it should have the same properties as a random function:
	- Mapping is uniformly random (all hash values appear equally often)
	- Mapping of different keys is independent (not clear what exactly this means for a deterministic function)
- Usually, these conditions cannot be verified.
- If something about the distribution of key values is known, this knowledge can potentially be used.
- Luckily there are simple heuristics that work well in practice.

Choose hash function as

 $h(x) = x \mod m$

- All values between 0 and $m-1$ appear equally often
	- as far as this is possible

Advantages:

- Very simple function
- A single division \rightarrow can be computed very fast
- Often works quite well, as long as m is chosen carefully...

Remarks:

- If the keys are not integers, one can interpret the bit sequences representing the keys as integers.
- Consecutive keys are mapped to consecutive hash values.

Choose hash function as

 $h(x) = x \mod m$

Choice of Divisor

- $h(x)$ could be computed particularly fast if $m = 2^k$
- This is however no good choice because then the hash value is just the last k bits of the key!
	- The hash value should depend on all the bits.
- The best is to choose m as a prime number.
- A prime number m for which $m = 2^k 1$ is also not ideal.
- Best: prime m that is not too close to a power of 2.

Multiplication Method

Choose hash function as $h(x) = [m \cdot (Ax - |Ax|)]$ $0 \leq Ax - |Ax| < 1$

• \overline{A} is a constant between 0 and 1

Remarks

- Here, one can choose $m = 2^k$ (for an integer k)
- If integers are values 0 to $2^w 1$, one typically picks an integer $s \in \{1, ..., 2^w - 1\}$ and defines $A = s \cdot 2^{-w}$

ŞŘ

Choose hash function as

 $h(x) = |m \cdot (Ax - |Ax|)|$

• \overline{A} is a constant between 0 and 1

Remarks

- Here, one can choose $m = 2^k$ (for an integer k)
- If integers are values 0 to $2^w 1$, one typically picks an integer $s \in \{1, ..., 2^w - 1\}$ and defines $A = s \cdot 2^{-w}$
	- $-$ In principle every A works, in [Knuth; The Art of Comp. Progr. Vol. 3] it is suggested to use

$$
A \approx \frac{\sqrt{5} - 1}{2} = 0.6180339887 \dots
$$

Random Hash Functions

If h is chosen randomly among all possible hash functions:

$$
\forall x_1, x_2 : \Pr(h(x_1) = h(x_2)) = \frac{1}{m}
$$

and many other good properties …

Problem:

- Such a function cannot be represented and implemented efficiently.
	- One essentially needs a table with an entry for each possible key

Idea:

- Choose a function at random from a smaller space
	- E.g., use the multiplication method $h(x) = |m \cdot (Ax |Ax|)|$ with a random parameter A
- Not quite as good as a uniformly random hash function, but if it is done correctly, the ideas works \rightarrow universal hashing

Universal Hashing : Idea

Space of all possible hash functions

Choose *H* such that:

- $|\mathcal{H}|$ is not too large and the functions in \mathcal{H} are easy to implement
- A random function h from H behaves similarly to a uniformly random function
- In particular regarding the collision prob.:

$$
\forall x_1, x_2 : \Pr(h(x_1) = h(x_2)) \approx \frac{1}{m}
$$

Universal Hashing : Definition

The set $\mathcal H$ is called \bm{c} -universal if

Definition:

- Let S be the set of possible keys and m be the size of the hash table
- Let H be a set of hash functions $S \to \{0, ..., m-1\}$

 $\forall x, y \in \mathcal{S}: x \neq y \Longrightarrow |\{h \in \mathcal{H}: h(x) = h(y)\}| \leq c$ $\boldsymbol{\mathcal{H}}$ \boldsymbol{m} .

With other words, if h is chosen at random from H , we have

$$
\forall x, y \in S : x \neq y \implies \Pr(h(x) = h(y)) \leq \frac{c}{m}
$$

• **Remark:**

The set H of all m^M possible hash functions is 1-universal.

<u>Zw</u>

Universal Hashing : List Lengths

Theorem:

- Let H be a c-universal set of hash functions $S \rightarrow \{0, ..., m-1\}$
- Let $X \subset S$ be an arbitrary set of keys
- Let $h \in \mathcal{H}$ be a random hash function from the set \mathcal{H}
- For a given $x \in X$, let

$$
B_x := \{ y \in X : h(y) = h(x) \}
$$

• In expectation,
$$
B_x
$$
 has size $< 1 + c \cdot \frac{|X|}{m}$

Therefore:

In expectation, all lists are short!

Negative Example:

• Parametrized variant of the division method

$$
\mathcal{H} = \{h : x \to a \cdot x \text{ mod } m \text{ for } a \in \{1, \dots, M - 1\}\}
$$

Counterexample: choose an arbitrary x and choose $y = x + m$

$$
- h(x) = a \cdot x \mod m
$$

$$
- h(y) = a \cdot (x + m) \mod m = (a \cdot x + a \cdot m) \mod m = a \cdot x \mod m
$$

The set $\mathcal H$ is called \bm{c} -universal if

$$
\forall x, y \in S: x \neq y \Longrightarrow |\{h \in \mathcal{H}: h(x) = h(y)\}| \leq c \cdot \frac{|\mathcal{H}|}{m}
$$

Positive Example 1:

m arbitrary, *p*: prime such that $p > M$

 $\mathcal{H} = \{h : x \to ((a \cdot x + b) \mod p) \mod m \text{ for } a, b \in \mathcal{S}, a \neq 0\}$

- The set is c-universal für $c \approx 1$ if $p \approx M$
- For x, y, we have $h(x) = h(y)$, if for some $i \in \mathbb{Z}$:

holds for at most
\n
$$
2 \cdot \left[\frac{p-1}{m}\right] + 1
$$
\ndiff. values of *i*

<u>| വ</u>

.

$$
(ax + b) \bmod p = (ay + b) \bmod p + i \cdot m
$$

$$
a \equiv i \cdot m \cdot (x - y)^{-1} \pmod{p}
$$

For every x and y and for every b, for each possible value of i, there is only one value of a , for which x and y collide.

Universal Hashing : Example III

The set H is called c -universal if

$$
\forall x, y \in S: x \neq y \Longrightarrow |\{h \in \mathcal{H}: h(x) = h(y)\}| \leq c \cdot \frac{|\mathcal{H}|}{m}
$$

Positive Example 2:

- *m* prime, $k = |\log_m M|$, parameter $a \in S = \{0, ..., M 1\}$
- Consider parameter a and key x in basis- m representation:

$$
a = a_0 + a_1 \cdot m + a_2 \cdot m^2 + \dots + a_k \cdot m^k \quad a_i, x_i \in \{0, \dots, m-1\} \quad n \in \mathbb{Z} \times \mathbb{Z} + \dots + x_k \cdot m^k
$$

$$
\mathcal{H} = \left\{ h : x \to \left(\sum_{i=0}^{k} a_i \cdot x_i \right) \text{ mod } m \text{ for } a_i \in \{0, ..., m-1\} \right\}
$$

The set H is 1-universal

 17

.

Universal Hashing : Summary

- If the hash function is chosen at random from a universal set of hash functions, the collision probability for two keys x and y is equal as for a random hash function.
- There are simple and efficient constructions of universal sets of hash functions.

One can take this further:

• Pairwise independent set of hash functions

$$
\forall x, y \in \mathcal{S}, \forall a, b \in \mathbb{Z}_m : \Pr(h(x) = a \land h(y) = b) = \frac{1}{m^2}
$$

- A random function from such a set behaves exactly the same as a random function for every pair of keys x , y (not just regarding collisions)
- k -independent set of hash functions
	- A random function from such a set behaves exactly the same as a random hash function for every set of k different keys.

Rehash

Remember:

Load of a hash table: $\alpha = n/m$

What if a hash table becomes too full?

- Open Addressing:
	- $-\alpha > 1$ impossible, for $\alpha \rightarrow 1$ very inefficient
	- If one inserts and deletes a lot, the table also becomes inefficient (because of the deleted marks)
- Chaining: Complexity grows linearly with α

What it the chosen hash function behaves badly?

Rehash:

- Create a new, larger hash table, choose a new hash function h' .
- Insert all existing (key, value) pairs.

A rehash is expensive!

Cost (time):

- $\Theta(m + n)$: grows linearly in the number of inserted values and in the length of the old hash table
	- typically, this is just $\Theta(n)$
- **If done correctly, a rehash is rarely necessary:**
	- good hash function (e.g., from a universal set)
	- good choice of table sizes:

with each **rehash**, the **table size** should be roughtly **doubled**

old size $m \implies$ new size $\approx 2m$

– With doubling, one gets constant time per hash table operation on average \rightarrow amortisierte Analyse

Cost of Rehash

Analysis Doubling Strategy

- We make a few simplifying assumptions:
	- $-$ Up to load α_0 (e.g., $\alpha_0 = {}^1\!/_2$) all hash table operations cost \leq $c.$
	- At load α_0 , we double the table size: old size m, new size $2m$, cost $\leq c \cdot m$.
	- At the beginning, the table has size m_0 ∈ $O(1)$.
	- The table size is never decreased…
- How large is the cost for rehashing, compared to the total cost of all other operations?

Cost of Rehash

Overall Cost

- We assume that the table size is $m = m_0 \cdot 2^k$ for $k \geq 1$
	- $-$ i.e., up to now, we have done $k \geq 1$ rehash steps
	- remark: for $k = 0$ the rehash cost is still 0.
- The overall rehash cost is

$$
\leq \sum_{i=0}^{k-1} c \cdot m_0 \cdot 2^i = c \cdot m_0 \cdot \left(2^k - 1\right) \leq c \cdot m
$$

- Overall cost for the remaining operations
	- For the rehash from size $m/2$ to size m we had $\geq \alpha_0 \cdot m/2$ entries in the table.
	- Number of hash table operations (without rehash)

$$
\geq \frac{\alpha_0}{2} \cdot m
$$

≦≃

Cost of Rehash

• The overall rehash cost is

$$
\leq \sum_{i=0}^{k-1} c \cdot m_0 \cdot 2^i = c \cdot m_0 \cdot \left(2^k - 1\right) \leq c \cdot m
$$

• Number of hash table operations:

$$
\#OP \geq \frac{\alpha_0}{2} \cdot m
$$

• Average cost per operation

$$
\frac{\#OP \cdot c + \text{Rehash_Kosten}}{\#OP} \leq c + \frac{2c}{\alpha_0} \in O(1)
$$

- On average, the cost per operation is constant
	- also for worst-case inputs (as long as the simplifying assumptions hold)
	- **average cost per operation = amortized cost per operation**

Algorithm analysis so far:

• worst case, best case, average case

Now additionaly **amortized worst case:**

- n operations o_1 , ..., o_n on some data structure, t_i : cost of o_i
- Costs can be very different from each other (z.B. $t_i \in [1, c \cdot i]$)
- Amortized cost per operation

$$
\frac{T}{n}, \qquad \text{where } T = \sum_{i=1}^{n} t_i
$$

• **Amortized cost:** Average cost per operation in a worst-case execution

 $-$ amortized worst case \neq average case!

• More on this in the algorithm theory lecture

Amortized Analysis Rehash

- If one only increases the table size and assumes that for small load, hash table operations require time $O(1)$, the amortized cost (time) per operation is $O(1)$.
- Analysis also works for a random hash function from a universal set of hash functions (with high probability)
	- Then, for small load, hash table operations with high probability have amortized cost $O(1)$.
- Analysis can be adapted for rehashs for decreasing the table size
	- And also for cases where a rehash is necessary because of a lot of delete operations (and the resulting deleted marks)
- In a similar way, one can build dynamic-size arrays from fixed-size arrays
	- All array operations have $O(1)$ amortized running time.
	- ADT only allows increasing/decreasing size in 1-element steps at the end.

Hashing Summary:

- Efficient dictionary data structure
- Operations in expectation (usually) require $O(1)$ time.
- Hashing with separate chaining can be implemented such that insert always has running time $\mathcal{O}(1)$.
- Can we also guarantee **running time** $O(1)$ **for find**?
	- if at the same time insert is only $O(1)$ time in expectation...

Cuckoo Hashing Idea:

- Open addressing
	- At each table position, there is only space for one entry.
- Two hash functions h_1 and h_2
- A key x is always stored at position $h_1(x)$ or $h_2(x)$
	- If both positions are occupied when inserting x , one has to reorganize...

Inserting a key x:

- x is always inserted at position $h_1(x)$
- If there already is another key y at position $h_1(x)$:
	- $-$ Remove y from this position (thus the name cuckoo hashing)
	- γ has to be inserted at its alternative position (if it was at pos. $h_1(y)$, it has to go to pos. $h_2(y)$, otherwise to pos. $h_1(y)$)
	- $-$ If there is already a key z at this position, remove z from there and place it at its alternative position
	- $-$ And so on \ldots

Find / Delete:

- If x is in the table, it is at position $h_1(x)$ or $h_2(x)$
- For delete: Mark table entry as empty!
- Both operations always require time $O(1)$!

Cuckoo Hashing Example

Table size: $m = 5$ Hash functions: $h_1(x) = x \text{ mod } 5$, $h_2(x) = 2x - 1 \text{ mod } 5$ Insert keys 17, 28, 7, 10, 20:

52

Cuckoo Hashing : Cycles

- When inserting, we can get a cycle
	- x replaces y_1
	- y_1 replaces y_2
	- y_2 replaces y_3
	- …
	- $y_{\ell-1}$ replaces y_{ℓ}
	- y_{ℓ} replaces x or y_i for some $i < \ell$
- Or it can happen that for some key $h_1(y_i) = h_2(y_i)$
- If this happens, we can also try the alternative position for x , but there the same can happen again…
- In this case, one chooses new hash functions and performs a rehash (usually with a larger table).

Cuckoo Hashing : Hash Functions

How to choose the two hash functions?

- They should be as "independent" as possible…
- Few keys x for which $h_1(x) = h_2(x)$
- A good choice:

two independent, random functions from a universal set

- Then, one can show that cycles only occur rarely as long as $n \leq m/2$.
- As soon as the table is half full ($n \geq m/2$), one should do a rehash and switch to a table of twice the size.

Cuckoo Hashing : Running Time

Find / Delete:

- Always running time $O(1)$
- One only has to inspect the two positions $h_1(x)$ and $h_2(x)$.
- This is the big advantage of cuckoo hashing.

Insert:

- One can show that on average, it also requires time $O(1)$
- If the table is not filled to more than half its size
- Doubling the table size when rehashing leads to constant average running time per operation!

Efficient method to implement a dictionary

Handling of Collisions

- Hashing with separate chaining
	- simple, very flexible, with 2 hash functions, the list lengths can be restricted to $O(\log \log n)$ with high probability
- Open Addressing
	- different possibilities, more efficient in practice
	- possible to implement such that find has worst-case time $\mathcal{O}(1)$.
	- load $\alpha > 1$ impossible, if α becomes large, one has to do a rehash

Hash Functions

- There are simple strategies to obtain good hash functions.
	- In practice, often, a single fixed hash function is used.

Rehash

- If a hash table becomes too full, one has to reset the whole table
	- This can be done such that the average running time per operation is still constant.

<u>Z٣</u>