
Algorithms and Data StructuresFabian Kuhn

Lecture 5

Hash Tables 2:
Hash Functions, Universal Hashing,
Rehash, Cuckoo Hashing

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn

Implements a Dictionary

•Manage a set of (key, value) pairs

•Main operations: insert, find, delete

Hash Tables

Key Space

(ὓpossbile keys)

hash functionὬȡהᴼ πȟȣȟά ρ

2

hash table of
sizeά ὕὲ

Algorithms and Data StructuresFabian Kuhn

We have seen so far:

efficient method to implement a dictionary

•All operations typically have running time ὕρ
– If the hash functions are sufficiently random and can be evaluated

in time ὕρ.

– The worst-case running time is somewhat larger, in every application of
hash tables, there will be some more expensive operations.

We will now see:

•How to choose a good hash function?

•What to do if the hash table becomes too small?

•How to implement hashing such that find always requires
time ὕρ.

3

Hash Tables

Algorithms and Data StructuresFabian Kuhn

How to choose a good hash functions?

What properties should a good hash function satisfy?

• In principle, it should have the same properties as a random
function:
– Mapping is uniformly random (all hash values appear equally often)

– Mapping of different keys is independent
(not clear what exactly this means for a deterministic function)

•Usually, these conditions cannot be verified.

• If something about the distribution of key values is known, this
knowledge can potentially be used.

•Luckily there are simple heuristics that work well in practice.

4

Good Hash Functions

Algorithms and Data StructuresFabian Kuhn

Choose hash function as
▐● ●ἵἷἬ□

•All values betweenπand ά ρappear equally often
– as far as this is possible

Advantages:

• Very simple function

• A single divisionĄ can be computed very fast

• Often works quite well, as long as ά is chosen carefully...

Remarks:

• If the keys are not integers, one can interpret the bit sequences
representing the keys as integers.

• Consecutive keys are mapped to consecutive hash values.

5

Division Method

Algorithms and Data StructuresFabian Kuhn

Choose hash function as
▐● ●ἵἷἬ□

Choice of Divisor □

•Ὤὼ could be computed particularly fast ifά ς

•This is however no good choice because then the hash value is just
the last Ὧbits of the key!
– The hash value should depend on all the bits.

•The best is to chooseάas a prime number.

•A prime numberάfor whichά ς ρis also not ideal.

•Best: prime άthat is not too close to a power of 2.

6

Division Method

Algorithms and Data StructuresFabian Kuhn

ίẗὼὃẗὼ

Choose hash function as
▐● □ẗ═● ═●

•ὃis a constant between πand ρ

Remarks

•Here, one can choose ά ς (for an integer Ὧ)

• If integers are valuesπto ς ρ, one typically picks an
integer ίɴ ρȟȣȟς ρ and defines ὃ ίẗς

7

Multiplication Method

ί

ὼ

ύbits

ẗ

ȟ

ὃ
ί

ς

═● ỗ═●ỘỗὃὼỘ

ᴺ▓bitsᴼ

▐●

π ὃὼ ὃὼ ρ

Algorithms and Data StructuresFabian Kuhn

Choose hash function as
▐● □ẗ═● ═●

•ὃis a constant between πand ρ

Remarks

•Here, one can choose ά ς (for an integer Ὧ)

• If integers are valuesπto ς ρ, one typically picks an
integer ίɴ ρȟȣȟς ρ and defines ὃ ίẗς

– In principle everyὃworks, in [Knuth; The Art of Comp. Progr. Vol. 3] it is
suggested to use

ὃ
υ ρ

ς
πȢφρψπσσωψψχȣ

8

Multiplication Method

Algorithms and Data StructuresFabian Kuhn

If Ὤis chosen randomly among all possible hash functions:

ὼᶅȟὼḊ0ÒὬὼ Ὤὼ
ρ

ά

Problem:

•Such a function cannot be represented and implemented
efficiently.
– One essentially needs a table with an entry for each possible key

Idea:

•Choose a function at random from a smaller space
– E.g., use the multiplication methodὬὼ άẗὃὼ ὃὼ with a

random parameterὃ

•Not quite as good as a uniformly random hash function, but if it is
done correctly, the ideas works Ą universal hashing

9

Random Hash Functions

and many other good properties …

Algorithms and Data StructuresFabian Kuhn

Hash functions: ▐Ḋ ᴼ ȟȣȟ□

Space of all possible hash functions

10

Universal Hashing : Idea

Key Space

ה πȟȣȟὓ ρ

Ὤ
Positions πȟȣȟά ρ

possible hash functions
(no. functions: ά)

subset

כֿ

Choose ֿכ such that:

• ꞊ is not too large and the functions in ꞊
are easy to implement

• A random functionὬfrom ꞊ behaves
similarly to a uniformly random function

• In particular regarding the collision prob.:

ὼᶅȟὼḊ0ÒὬὼ Ὤὼ
ρ

ά

Algorithms and Data StructuresFabian Kuhn

Definition:

•Let הbe the set of possible keys andάbe the size of the hash table

•Let꞊ be a set of hash functions הᴼ πȟȣȟά ρ

•With other words, if Ὤis chosen at random from꞊, we have

ὼᶅȟώᶰὛḊὼ ώ 0ÒὬὼ Ὤώ
ὧ

ά

•Remark:

The set ꞊ of all ά possible hash functions isρ-universal.

11

Universal Hashing : Definition

The set ֿכ is called ╬-universal if

●ᶅȟ◐ᶰ Ḋ● ◐ ▐ᶰֿכḊ▐● ▐◐ ╬ẗ
כֿ

□
Ȣ

Algorithms and Data StructuresFabian Kuhn

Theorem:

•Let ꞊ be a ὧ-universal set of hash functions הᴼ πȟȣȟά ρ

•Let ὢṒהbe an arbitrary set of keys

•LetὬᶰ꞊ be a random hash function from the set꞊

•For a given ὼɴ ὢ, let

ὄ ḧ ώᶰὢḊὬώ Ὤὼ

• In expectation, ὄ has size

Therefore:

• In expectation, all lists are short!

12

Universal Hashing : List Lengths

ρ ὧẗ
ὢ

ά

Algorithms and Data StructuresFabian Kuhn

Negative Example:

•Parametrized variant of the division method

꞊ ὬḊὼO ὥẗὼÍÏÄά ÆÏÒὥᶰρȟȣȟὓ ρ

•Counterexample: choose an arbitraryὼand choose ώ ὼ ά

–Ὤὼ ὥẗὼÍÏÄά

–Ὤώ ὥẗὼ ά ÍÏÄά ὥẗὼ ὥẗά ÍÏÄά ὥẗὼÍÏÄά

13

Universal Hashing : Example I

The set ֿכ is called ╬-universal if

●ᶅȟ◐ᶰ Ḋ● ◐ ▐ᶰֿכḊ▐● ▐◐ ╬ẗ
כֿ

□
Ȣ

Algorithms and Data StructuresFabian Kuhn

Positive Example 1:

•άarbitrary, ὴ: prime such that ὴ ὓ

꞊ ὬḊὼO ὥẗὼ ὦÍÏÄὴÍÏÄά ÆÏÒὥȟὦɴ ȟὥה π

•The set is ὧ-universal für ὧ ρif ὴ ὓ

•Forὼ, ώ, we have Ὤὼ Ὤώ, if for some Ὥɴ ᴚ:

ὥὼ ὦÍÏÄὴ ὥώ ὦÍÏÄὴ Ὥẗά

•For everyὼand ώand for everyὦ, for each possible value ofὭ, there
is only one value ofὥ, for whichὼand ώcollide.

14

Universal Hashing : Example II

The set ֿכ is called ╬-universal if

●ᶅȟ◐ᶰ Ḋ● ◐ ▐ᶰֿכḊ▐● ▐◐ ╬ẗ
כֿ

□
Ȣ

ὥḳὭẗάẗὼ ώ ÍÏÄὴ

holds for at most

ςẗ
ὴ ρ

ά
ρ

diff. values of Ὥ

Algorithms and Data StructuresFabian Kuhn

Positive Example 2:

•άprime, ▓ ỗἴἷἯ□╜Ộ, parameter ὥᶰה πȟȣȟὓ ρ

•Consider parameter ὥand keyὼin basis-άrepresentation:

ὥ ὥ ὥẗά ὥẗά Ễ ὥẗά
ὼ ὼ ὼẗά ὼẗά Ễ ὼẗά

꞊ ὬḊὼO

▓

ὥẗὼ ÍÏÄάÆÏÒὥᶰπȟȣȟά ρ

•The set ꞊ is ρ-universal
15

Universal Hashing : Example III

The set ֿכ is called ╬-universal if

●ᶅȟ◐ᶰ Ḋ● ◐ ▐ᶰֿכḊ▐● ▐◐ ╬ẗ
כֿ

□
Ȣ

ὥȟὼᶰπȟȣȟά ρ

Algorithms and Data StructuresFabian Kuhn

• If the hash function is chosen at random from a universal set of
hash functions, the collision probability for two keys ὼand ώis
equal as for a random hash function.

•There are simple and efficient constructions of universal sets of
hash functions.

One can take this further:

•Pairwise independent set of hash functions

ὼᶅȟώᶰהȟᶅὥȟὦɴ ᴚ ȡ0ÒὬὼ ὥ᷈Ὤώ ὦ
ρ

ά
– A random function from such a set behaves exactly the same as a random

function for every pair of keys ὼȟώ(not just regarding collisions)

•Ὧ-independent set of hash functions
– A random function from such a set behaves exactly the same as a random

hash function for every set of Ὧdifferent keys.
16

Universal Hashing : Summary

Algorithms and Data StructuresFabian Kuhn

Remember:

•Load of a hash table: ‌ ϳὲά

What if a hash table becomes too full?

•Open Addressing:

–‌ ρimpossible, for‌ᴼρvery inefficient

– If one inserts and deletes a lot, the table also becomes inefficient
(because of the deleted marks)

•Chaining: Complexity grows linearly with‌

What it the chosen hash function behaves badly?

17

Rehash

Rehash:
•Create a new, larger hash table, choose a new hash function Ὤᴂ.
• Insert all existing (key, value) pairs.

Algorithms and Data StructuresFabian Kuhn

A rehash is expensive!

Cost (time):

•ɡά ὲ : grows linearly in the number of inserted values and
in the length of the old hash table

– typically, this is just ɡὲ

• If done correctly, a rehash is rarely necessary:
– good hash function (e.g., from a universal set)

– good choice of table sizes:

with each rehash, the table size should be roughtly doubled

old size ά new size ςά

– With doubling, one gets constant time per hash table operation on average
Ą amortisierte Analyse

18

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

Analysis Doubling Strategy

•We make a few simplifying assumptions:
– Up to load ‌ (e.g., ‌ ϳ) all hash table operations cost ὧ.

– At load ‌, we double the table size:
old sizeά, new size ςά, cost ὧẗά.

– At the beginning, the table has sizeά ᶰὕρ.

– The table size is never decreased…

•How large is the cost for rehashing, compared to the total cost of
all other operations?

19

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

Overall Cost

•We assume that the table size is ά ά ẗς forὯ ρ
– i.e., up to now, we have done Ὧ ρrehash steps

– remark: for Ὧ πthe rehash cost is still π.

•The overall rehash cost is

ὧẗά ẗς ὧẗά ẗς ρ ὧẗά

•Overall cost for the remaining operations
– For the rehash from size ϳ to size άwe had ‌ẗϳentries in the table.

– Number of hash table operations (without rehash)

‌

ς
ẗά

20

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

•The overall rehash cost is

ὧẗά ẗς ὧẗά ẗς ρ ὧẗά

•Number of hash table operations:

Π/0
‌

ς
ẗά

•Average cost per operation

ΠἛἜẗ╬ ἠἭἰἩἻἰἕͅἷἻἼἭἶ

ΠἛἜ
╬

╬

♪
ᶰ╞

•On average, the cost per operation is constant
– also for worst-case inputs (as long as the simplifying assumptions hold)

– average cost per operation = amortized cost per operation

21

Cost of Rehash

Algorithms and Data StructuresFabian Kuhn

Algorithm analysis so far:

•worst case, best case, average case

Now additionaly amortized worst case:

•ὲoperations έȟȣȟέ on some data structure, ὸ: cost of έ

•Costs can be very different from each other (z.B. ὸᶰρȟὧẗὭ)

•Amortized cost per operation

Ὕ

ὲ
ȟ ×ÈÅÒÅὝ ὸ

•Amortized cost: Average cost per operation in a worst-case
execution

– amortized worst case average case!

•More on this in the algorithm theory lecture

22

Amortized Analysis

Algorithms and Data StructuresFabian Kuhn

• If one only increases the table size and assumes that for small
load, hash table operations require timeὕρ, the amortized cost
(time) per operation isὕρ.

•Analysis also works for a random hash function from a universal
set of hash functions (with high probability)
– Then, for small load, hash table operations with high probability have

amortized costὕρ.

•Analysis can be adapted for rehashs for decreasing the table size
– And also for cases where a rehash is necessary because of a lot of delete

operations (and the resulting deleted marks)

• In a similar way, one can build dynamic-size arrays from fixed-size
arrays
– All array operations haveὕρ amortized running time.

– ADT only allows increasing/decreasing size in 1-element steps at the end.

23

Amortized Analysis Rehash

Algorithms and Data StructuresFabian Kuhn

Hashing Summary:

•Efficient dictionary data structure

•Operations in expectation (usually) requireὕρ time.

•Hashing with separate chaining can be implemented such that
insert always has running time ὕρ.

•Can we also guarantee running time ╞ for find?
– if at the same time insert is onlyὕρ time in expectation…

Cuckoo Hashing Idea:

•Open addressing
– At each table position, there is only space for one entry.

•Two hash functionsὬ and Ὤ

•A keyὼis always stored at position Ὤ ὼ or Ὤ ὼ
– If both positions are occupied when inserting ὼ, one has to reorganize…

24

Cuckoo Hashing Idea

Algorithms and Data StructuresFabian Kuhn

Inserting a key●:

•ὼis always inserted at position Ὤ ὼ

• If there already is another keyώat position Ὤ ὼ:
– Remove ώfrom this position (thus the name cuckoo hashing)

–ώhas to be inserted at its alternative position
(if it was at pos. Ὤ ώ, it has to go to pos. Ὤ ώ, otherwise to pos. Ὤ ώ)

– If there is already a keyᾀat this position, remove ᾀfrom there and place it
at its alternative position

–And so on …

Find / Delete:

• Ifὼis in the table, it is at positionὬ ὼ or Ὤ ὼ

•For delete: Mark table entry as empty!

•Both operations always require time ὕρ !

25

Cuckoo Hashing

Algorithms and Data StructuresFabian Kuhn

Table size: ά υ

Hash functions: Ὤ ὼ ὼÍÏÄυ, Ὤ ὼ ςὼρÍÏÄυ

Insert keysρχ, ςψ, χ, ρπ, ςπ:

26

Cuckoo Hashing Example

π ρ ς σ τ

╗

ρχ ςψ χ ρπ ςπKeys:

Algorithms and Data StructuresFabian Kuhn

•When inserting, we can get a cycle

–ὼreplaces ώ

–ώ replaces ώ

–ώ replaces ώ

– …

–ώЉ replaces ώЉ
–ώЉreplaces ὼor ώfor someὭ Љ

•Or it can happen that for some key Ὤ ώ Ὤ ώ

• If this happens, we can also try the alternative position forὼ, but
there the same can happen again…

• In this case, one chooses new hash functions and performs a
rehash (usually with a larger table).

27

Cuckoo Hashing : Cycles

Algorithms and Data StructuresFabian Kuhn

How to choose the two hash functions?

•They should be as “independent” as possible…

•Few keysὼfor whichὬ ὼ Ὤ ὼ

•A good choice:

two independent, random functions from a universal set

•Then, one can show that cycles only occur rarely
as long asὲ άȾς.

•As soon as the table is half full (ὲ άȾς), one should do a rehash
and switch to a table of twice the size.

28

Cuckoo Hashing : Hash Functions

Algorithms and Data StructuresFabian Kuhn

Find / Delete:

•Always running time ὕρ

•One only has to inspect the two positions Ὤ ὼ and Ὤ ὼ.

•This is the big advantage of cuckoo hashing.

Insert:

•One can show that on average, it also requires time ὕρ

• If the table is not filled to more than half its size

•Doubling the table size when rehashing leads to constant average
running time per operation!

29

Cuckoo Hashing : Running Time

Algorithms and Data StructuresFabian Kuhn

Efficient method to implement a dictionary

Handling of Collisions

• Hashing with separate chaining
– simple, very flexible, with 2 hash functions, the list lengths can be restricted to
ὕÌÏÇÌÏÇὲ with high probability

• Open Addressing
– different possibilities, more efficient in practice

– possible to implement such that find has worst-case time ὕρ.

– load‌ ρimpossible, if‌becomes large, one has to do a rehash

Hash Functions

• There are simple strategies to obtain good hash functions.
– In practice, often, a single fixed hash function is used.

Rehash

• If a hash table becomes too full, one has to reset the whole table
– This can be done such that the average running time per operation is still

constant.

30

Hashing Summary

