
Algorithms and Data StructuresFabian Kuhn

Lecture 7

Binary Search Trees II

Algorithms and Data Structures

Fabian Kuhn

Algorithms and Complexity

Algorithms and Data StructuresFabian Kuhn 2

Binary Search Trees

Source: [CLRS]

Algorithms and Data StructuresFabian Kuhn

Worst-case running time of the operations
find, min, max, predecessor, successor, insert, delete:

𝑶 depth of tree

• In the best case, the depth is 𝐥𝐨𝐠𝟐 𝒏
– Definition depth: Length of longest path from the root to a leaf

• In the worst case, the depth is 𝒏 − 𝟏

• In the average case, the depth is 𝑶 𝐥𝐨𝐠𝒏
– Average here mean a random insertion order

Is it possible to guarantee that the depth of a binary search tree
is always 𝑂 log 𝑛 ?

3

Depth of a Binary Search Tree

Algorithms and Data StructuresFabian Kuhn

Random binary search tree:

• 𝒏 keys are inserted in a random order

Observation:

• With probability Τ1 3, both subtrees of the root have Τ𝑛 3 nodes.

• The key of the root is the first inserted key

• With probability Τ1 3 the key comes from the middle part.

4

“Typical” Case

1. Drittel der Schlüssel 2. Drittel der Schlüssel 3. Drittel der Schlüssel

Algorithms and Data StructuresFabian Kuhn

Random binary search tree:

• 𝒏 keys are inserted in a random order

Observation:

• With probability Τ1 3, both subtrees of the root have Τ𝑛 3 nodes.

• Analogously, this holds for all subtrees

• Thus, on average in every 3rd from the root towards a leaf, the

subtree gets smaller by a factor Τ2 3.

• Decreasing by a factor Τ2 3 can only happen 𝑂 log 𝑛 times.

• The depth of a random binary search tree is therefore 𝑂 log 𝑛

• Exact calculation gives:

Expected depth of a random binary search tree: 𝟒. 𝟑𝟏𝟏 ⋅ 𝐥𝐧𝒏

5

“Typical” Case

Algorithms and Data StructuresFabian Kuhn

“Typical” Case:

• If the keys are inserted in a random order, the resulting binary
search tree has depth 𝑂 log 𝑛 .

• All operations have running time 𝑂(log 𝑛).

Problem:

• A random insertion order is not necessarily the typical case!

• Presorted value can be equally typical.
– This results in a very bad binary search tree.

Idea:

• Can we enforce a random insertion order?

• Keys are inserted in an arbitrary order, but the structure should
always be as if they were inserted in random order!

6

Enforce “Typical” Case?

Algorithms and Data StructuresFabian Kuhn

• Keys are inserted in an arbitrary order, but the structure should
always be as if they were inserted in random order.

• For each key, when inserting they key, one determines a random
value. The structure of the tree is then always reorganized such that
it is the same as if the keys were inserted according to the sorted
order of those random values.

• The necessary structure changes of an insert or delete operation
can be done in time 𝑂 depth .

• With high probability, all operations then have running time
𝑂 log 𝑛 .

7

Treap: «Enforce» Random Order

Algorithms and Data StructuresFabian Kuhn

Goal: Binary search trees that are always balanced

• balanced, intuitively: each subtree, left & right ≈ equally large

• balanced, formally: subtree with 𝑘 nodes has depth 𝑂 log 𝑘

Red-black trees are binary search trees with the following properties:

1) All nodes are red or black.

2) The root is black.

3) The leaves (= NIL-nodes) are black.

4) Red nodes have two black children.

5) For each node 𝑣 all (direct) paths from 𝑣 to leaves (NIL) in the
subtree of 𝑣 have the same number of black nodes.

8

Red-Black Trees

Algorithms and Data StructuresFabian Kuhn 9

Red-Black Trees : Example

𝟐𝟔

𝟏𝟖 𝟒𝟑

𝟓𝟐𝟑𝟏𝟐𝟏𝟏𝟑

𝟐𝟒 𝟐𝟗 𝟒𝟎𝟏𝟗𝟏𝟕𝟏𝟎

𝟕 𝟏𝟏

𝟓

𝟏𝟒 𝟐𝟎 𝟒𝟐𝟑𝟕

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL

Algorithms and Data StructuresFabian Kuhn

• Root and leaves (NIL-nodes) are black.

• Red nodes have two black children.
10

Red-Black Trees : Properties

𝟐𝟔

𝟏𝟖 𝟒𝟑

𝟓𝟐𝟑𝟏𝟐𝟏𝟏𝟑

𝟐𝟒 𝟐𝟗 𝟒𝟎𝟏𝟗𝟏𝟕𝟏𝟎

𝟕 𝟏𝟏

𝟓

𝟏𝟒 𝟐𝟎 𝟒𝟐𝟑𝟕

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL

Algorithms and Data StructuresFabian Kuhn 11

Red-Black Trees : Properties

• In each subtree, all direct paths from the root to leaves of the
subtree have the same number of black nodes.

𝟐𝟔

𝟏𝟖 𝟒𝟑

𝟓𝟐𝟑𝟏𝟐𝟏𝟏𝟑

𝟐𝟒 𝟐𝟗 𝟒𝟎𝟏𝟗𝟏𝟕𝟏𝟎

𝟕 𝟏𝟏

𝟓

𝟏𝟒 𝟐𝟎 𝟒𝟐𝟑𝟕

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL

Algorithms and Data StructuresFabian Kuhn

To simplify the code…

Sentinel Node: NIL

• Replaces all None/null pointers

• NIL.key is not defined

• NIL.color = black
– The leaves of the tree are the NIL-nodes (they are all black)

– Represents all leaves of the tree

• NIL.left, NIL.right, NIL.parent can be set arbitrarily
– We have to make sure that they are never read and interpreted wrongly.

– If it simplifies the code, one can assign values to NIL.parent, ...

12

Sentinel

Algorithms and Data StructuresFabian Kuhn 13

Red-Black Trees : Sentinel

𝟐𝟔

𝟏𝟖 𝟒𝟑

𝟓𝟐𝟑𝟏𝟐𝟏𝟏𝟑

𝟐𝟒 𝟐𝟗 𝟒𝟎𝟏𝟗𝟏𝟕𝟏𝟎

𝟕 𝟏𝟏

𝟓

𝟏𝟒 𝟐𝟎 𝟒𝟐𝟑𝟕

NIL

Algorithms and Data StructuresFabian Kuhn

Definition: The height (𝑯) of a node 𝑣 is the maximal length of a path
from node 𝑣 to a leaf node (NIL).

Definition: The black-height (𝑩𝑯) of a node 𝑣 is the number of black nodes
on every path from 𝑣 to a leaf (NIL) in its subtree.

• The node 𝑣 itself is not counted, the leaf (NIL, if ≠ 𝑣) is however counted!

14

Height / Black-Height

𝟐𝟔

𝟏𝟖 𝟒𝟑

𝟓𝟐𝟑𝟏𝟐𝟏𝟏𝟑

𝟐𝟒 𝟐𝟗 𝟒𝟎𝟏𝟗𝟏𝟕𝟏𝟎

𝟕 𝟏𝟏

𝟓

𝟏𝟒 𝟐𝟎 𝟒𝟐𝟑𝟕

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL

height 𝒗 ≤ 𝟐 ⋅ black-height(𝒗)

Algorithms and Data StructuresFabian Kuhn

Lemma: The number of inner nodes in the subtree of a
node 𝑣 (𝑣 ≠ NIL) with black-height 𝑩𝑯(𝒗) is

≥ 𝟐𝑩𝑯 𝒗 − 𝟏

Proof by induction over the black-height 𝑩𝑯(𝒗) of 𝒗:

• Induction Base: 𝐵𝐻 𝑣 = 1: #inner nodes ≥ 21 − 1 = 1
– 𝑣 itself is an inner node!

• Induction Step:
– Consider a node 𝑣 with black-height 𝐵𝐻 𝑣 > 1

– Induction Hypothesis:

• Subtrees with black-height 𝑠 < 𝐵𝐻 𝑣 have ≥ 2𝑠 − 1 inner nodes

• Subtrees with black-height 𝑠 = 𝐵𝐻 𝑣 have ≥ 2𝑠−1 − 1 inner nodes

– Such subtrees contain subtrees with black-height 𝑠 − 1

15

Black-Height ↔ Number of Nodes

Algorithms and Data StructuresFabian Kuhn

The number of inner nodes in the subtree of a
node 𝑣 (𝑣 ≠ NIL) with black-height 𝑩𝑯(𝒗) is

≥ 𝟐𝑩𝑯 𝒗 − 𝟏

Proof by induction over the black-height 𝑩𝑯(𝒗) of 𝒗:

• Induction Step:
– Consider a node 𝑣 with black-height 𝐵𝐻 𝑣

– Both subtrees have
black-height ≥ 𝐵𝐻 𝑣 − 1

– Induction hypothesis:
Both subtrees have

≥ 2𝐵𝐻 𝑣 −1 − 1 nodes.

– #nodes in subtree of 𝒗:

≥ 𝟐 ⋅ 𝟐𝑩𝑯 𝒗 −𝟏 − 𝟏 + 𝟏 = 𝟐𝑩𝑯 𝒗 − 𝟏

16

Black-Height ↔ Number of Nodes

𝒗

𝒘𝒖

𝐵𝐻 𝑣 𝐵𝐻 𝑣 − 1

black-height

Algorithms and Data StructuresFabian Kuhn

Theorem:
The depth of a red-black tree is ≤ 𝟐 𝐥𝐨𝐠𝟐 𝒏 + 𝟏 .

Proof:

• Number of inner nodes : 𝑛 (all nodes except the NIL-nodes)

• From the lemma from before, we get

𝑛 ≥ 2𝐵𝐻 𝑟𝑜𝑜𝑡 − 1

• When solving for 𝐵𝐻 𝑟𝑜𝑜𝑡 , one gets

𝐵𝐻 𝑟𝑜𝑜𝑡 ≤ log2 𝑛 + 1

• The theorem now follows because

height ≤ 2 ⋅ black−height

17

Depth of a Red-Black Tree

Algorithms and Data StructuresFabian Kuhn

insert(x): First insert new node as usually, new node is red

if root == NIL then
root = new Node(x,a,red,NIL,NIL,NIL)

else
v = root;
while v.key != x do

if v.key > x then
if v.left == NIL then

w = new Node(x,a,red,v,NIL,NIL); v.left = w
v = v.left

else if v.key < x then
if v.right == NIL then

w = new Node(x,a,red,v,NIL,NIL); v.right = w
v = v.right

v.value = a

18

Red-Black Trees : Insert

key

color

parent left right
value

Algorithms and Data StructuresFabian Kuhn

Red-black tree properties after inserting

1. All nodes are red or black.

2. The root is black.

3. The leaves (NIL) are black.

4. Red nodes have two black children.

5. For every node 𝑣, all paths from 𝑣 to leaves in the subtree of
𝑣 have the same number of black nodes.

• Properties are all satisfied, except
– Inserted nodes 𝑣 is the root (Bedingung 2 nicht erfüllt)

– The node 𝑣. parent is red (Bedingung 4 nicht erfüllt)

• If 𝑣 is the root, we can just insert 𝑣 as a black node.

• If 𝑣. parent is red, we have to adjust the tree.
– such that 1, 3, and 5 remain satisfied and at the end 2 and 4 are satisfied

19

Red-Black Trees : Insert

Algorithms and Data StructuresFabian Kuhn

Right Rotation

• Operation to reorder a binary search tree locally

• Changes topology, preserves binary search tree property

20

Rotations

𝟕

𝟒 𝟗

𝟓𝟐

𝟒

𝟕𝟐

𝟓 𝟗

Algorithms and Data StructuresFabian Kuhn

Left Rotation

21

Rotations

𝟓

𝟖𝟒

𝟔 𝟗

𝟖

𝟓 𝟗

𝟔𝟒

Algorithms and Data StructuresFabian Kuhn

right-rotate(u,v):

u.left = v.right
u.left.parent = u
if u == root then

root = v
else

if u == u.parent.left then
u.parent.left = v

else
u.parent.right = v

v.parent = u.parent
v.right = u
u.parent = v

22

Right Rotation

𝒖

𝒗

𝒗

𝒖

Running Time: 𝑶(𝟏)

Algorithms and Data StructuresFabian Kuhn

left-rotate(u,v):

u.right = v.left
u.right.parent = u
if u == root then

root = v
else

if u == u.parent.left then
u.parent.left = v

else
u.parent.right = v

v.parent = u.parent
v.left = u
u.parent = v

23

Left Rotation

𝒖

𝒗

𝒗

𝒖

Running Time: 𝑶(𝟏)

Algorithms and Data StructuresFabian Kuhn

Lemma: Rotations preserve the “binary search tree” property.

Sorted order before rotation:

• 𝑎 < 𝑣 < 𝑏 < 𝑢 < 𝑐

Sorted order after rotation:

• 𝑎 < 𝑣 < (𝑏 < 𝑢 < 𝑐)

24

Correctness: Rotations

𝒖

𝒗 𝒄

𝒃𝒂

𝒗

𝒖𝒂

𝒃 𝒄

Algorithms and Data StructuresFabian Kuhn

Red-black tree properties after inserting

1. All nodes are red or black.

2. The root is black.

3. The leaves (NIL) are black.

4. Red nodes have two black children.

5. For every node 𝑣, all paths from 𝑣 to leaves in the subtree of
𝑣 have the same number of black nodes.

• Properties are all satisfied, except
– Inserted nodes 𝑣 is the root (Bedingung 2 nicht erfüllt)

– The node 𝑣. parent is red (Bedingung 4 nicht erfüllt)

• If 𝑣 is the root, we can just insert 𝑣 as a black node.

• If 𝑣. parent is red, we have to adjust the tree.
– such that 1, 3, and 5 remain satisfied and at the end 2 and 4 are satisfied

25

Red-Black Trees : Insert

Algorithms and Data StructuresFabian Kuhn

Adjust tree after inserting:

• Assumptions:
– 𝑣 is red, 𝑣 has two black children

– 𝑢 ≔ 𝑣. parent is red (otherwise, we are done)

– 𝑣 is the left child of 𝑢 (other case symmetric)

– Sibling node 𝑤 of 𝑣 (right child of 𝑢) is black

– All red nodes except 𝑢 have 2 black children

• Case distinction based on color of 𝒒 (sibling of 𝒖) and based on
𝒖 = 𝒑. 𝐥𝐞𝐟𝐭 or 𝒖 = 𝒑. 𝐫𝐢𝐠𝐡𝐭

26

Red-Black Trees : Insert

𝒑

𝒗 𝒘

𝒖 𝒒

𝒑

𝒗 𝒘

𝒖𝒒

Algorithms and Data StructuresFabian Kuhn

Case 𝟏: Sibling 𝒒 of 𝒖 is black

• Case 1a: 𝒖 = 𝒑. 𝐥𝐞𝐟𝐭

27

Red-Black Trees : Insert

𝒑

𝒗 𝒘

𝒖 𝒒 1. right-rotate(p,u)

𝒖

𝒑𝒗

𝒘 𝒒

𝒖

𝒑𝒗

𝒘 𝒒

Algorithms and Data StructuresFabian Kuhn

Case 𝟏: Sibling 𝒒 of 𝒖 is black

• Case 1b: 𝒖 = 𝒑. 𝐫𝐢𝐠𝐡𝐭

• After rotation:
– symmetrical to Case 1a

– 𝑢, 𝑣 are red, sibling 𝑞 is black

– 𝑢 is right child of 𝑣, 𝑣 is right child of 𝑝

– resolve by

left-rotate(p,v) and recoloring
28

Red-Black Trees : Insert

1. right-rotate(u,v)

𝒑

𝒗 𝒘

𝒖𝒒

𝒑

𝒖

𝒘

𝒗𝒒

Algorithms and Data StructuresFabian Kuhn

Case 𝟏: Sibling 𝒒 of 𝒖 is black

• Case 1b: 𝒖 = 𝒑. 𝐫𝐢𝐠𝐡𝐭

29

Red-Black Trees : Insert

1. right-rotate(u,v)

3. recolor

𝒑

𝒗 𝒘

𝒖𝒒

𝒑

𝒖

𝒘

𝒗𝒒

𝒗

𝒑 𝒖

𝒒 𝒘

𝒗

𝒑 𝒖

𝒒 𝒘

Algorithms and Data StructuresFabian Kuhn

Case 2: Sibling 𝒒 of 𝒖 is red

• If 𝑝. parent is black, we are done
– This is also the case if 𝑝 == root (we then do root. color ≔ black)

• Otherwise, we are in the same case as in the beginning
– but closer to the root!

30

Red-Black Trees : Insert

𝒑

𝒗 𝒘

𝒖 𝒒

𝒑

𝒗 𝒘

𝒖𝒒

recolor

𝒑

𝒗 𝒘

𝒖 𝒒

𝒑

𝒗 𝒘

𝒖𝒒

Algorithms and Data StructuresFabian Kuhn

1. Insert new key normally.
– Color of new node is red.

2. As long as we are in Case 2, recolor
– Case 2: red node 𝑣 with a red parent node 𝑢

– Sibling of 𝑢 is also red

3. As soon as we are not in Case 2
– If it is a valid red-black tree, we are done.

– If the root is red, the root has to be recolored black.

– Otherwise, we are in Case 1a or 1b (or symmetrically) and, we can get a
valid red-black tree with at most 2 rotations and recoloring of at most 2
nodes.

• Running time: 𝑂 tree depth = 𝑂(log 𝑛)

31

Red-Black Trees : Insert

Algorithms and Data StructuresFabian Kuhn

1. As usual, find a node 𝑣 that can be deleted.
– Node 𝑣 has at most one non-NIL child!

Case Distinction (color of 𝒗 and 𝒗. 𝐩𝐚𝐫𝐞𝐧𝐭)

Assumption: 𝑣 is left child of 𝑢 (other case symmetric)

Case 1: node 𝒗 is red

• As 𝑣 must have at least 1 NIL child, because of the red-black tree
properties, 𝑣 must have 2 NIL children.

• 𝑣 can just be deleted.
– The tree remains a valid red-black tree.

32

Red-Black Trees : Delete

𝒗

NIL NIL

𝒖

Algorithms and Data StructuresFabian Kuhn

Case 2: node 𝒗 is black

• Case 2a: 𝒗 has one (red) none-NIL child 𝒘

• Case 2b: 𝒗 has only NIL children

33

Red-Black Trees : Delete

delete 𝒗, color 𝒘 black𝒗

𝒖

NIL
𝒘

NIL NIL

𝒘

𝒖

NIL NIL

1. delete 𝒗

Node 𝑢 now has
black-height 1 to the left
(instead of 2).

We have to adjust
the tree.

𝒖

NIL 𝒘𝒗

𝒖

NIL NIL

𝒘

Algorithms and Data StructuresFabian Kuhn

Problematic case:

• Node 𝒗 has only NIL children

• Goal: We want to move the additional “black” up the tree until we
can move it to a red node or until we reach the root (and we
therefore do not have a problem any more).

• Case distinction: Color if 𝑤 and of the children of 𝑤
– Observation: 𝑤 cannot be NIL (because of the black-height)!

34

Red-Black Trees : Delete

1. delete 𝒗𝒗

𝒖

NIL NIL

𝒘

We first fix the wrong
black-height coloring
double black.

𝒖

NIL 𝒘𝒙

Algorithms and Data StructuresFabian Kuhn

Assumption:

• Double black node 𝑥

• Parent 𝑢 has arbitrary color (marked as green)

• 𝑥 is left child of 𝑢 (right child: symmetrically)

• Sibling of 𝑥 (right child of 𝑢) is 𝑤

Case distinction:

• Case A: 𝒘 is black, Case B: 𝒘 is red

35

Red-Black Trees : Delete

𝒙

𝒖

𝒘

𝒂 𝒃

Case A.1

𝒙

𝒖

𝒘

𝒂 𝒃

Case A.2

𝒙

𝒖

𝒘

𝒂 𝒃

Case A.3

𝒙

𝒖

𝒘

𝒂 𝒃

Case B

Algorithms and Data StructuresFabian Kuhn

Case A.1: 𝒘 is black, right child of 𝒘 is red

36

Red-Black Trees : Delete

𝒙

𝒖

𝒘

𝒂 𝒃

1. left-rotate(u,w)

𝒘

𝒖

𝒙

𝒃

𝒂

𝒘

𝒖

𝒙

𝒃

𝒂

Algorithms and Data StructuresFabian Kuhn

Case A.2: 𝒘 is black, left chilf of 𝒘 is red, right child of 𝒘 is black

37

Red-Black Trees : Delete

1. right-rotate(w,a)𝒙

𝒖

𝒘

𝒂 𝒃

𝒙

𝒖

𝒂

𝒘

𝒃

𝒙

𝒖

𝒂

𝒘

𝒃

Now, we are back in case A.1
(𝑎 takes role of 𝑤)

left-rotate(𝑢, 𝑎) and recoloring
eliminates “double black”

Algorithms and Data StructuresFabian Kuhn

Case A.3: 𝒘 is black, both children of 𝒘 are black

• The additional “black” moves one level up.

• If 𝑢 is red, 𝑢 can now just be colored black.

• Otherwise, node 𝑢 takes the role of 𝑥 and it can again be in one of
the Cases A.1, A.2, A.3, or B (see next slide).

• Case A.3 can happen at most 𝑂(log 𝑛) times.
– If 𝑢 == root, we can just remove the additional “black”.

• In Cases A.1 and A.2, we are done after constant time.

38

Red-Black Trees : Delete

𝒙

𝒖

𝒘

𝒂 𝒃

1. recolor

𝒖

𝒘

𝒂 𝒃

𝒙

Algorithms and Data StructuresFabian Kuhn

Case B: 𝒘 is red

39

Red-Black Trees : Delete

𝒙

𝒖

𝒘

𝒂 𝒃

1. left-rotate(u,w)

𝒘

𝒖

𝒙

𝒃

𝒂

𝒘

𝒖

𝒙

𝒃

𝒂

Now, we are in Case A.1, A.2, or A.3

• In Cases A.1 or A.2, we are done in
time 𝑂 1 .

• In Case A.3, we are also done in
time 𝑂(1), because 𝑢 is red!

Algorithms and Data StructuresFabian Kuhn

1. As usual
– Find node 𝑣 with at most 1 NIL child that can be deleted.

– 𝑣 is possibly predecessor/successor of node with the key to be deleted.

2. If 𝑣 is black and has two NIL children, we have to adjust.
– One then gets a black node 𝑥 with an additional “black”.

3. Possible cases: A.1, A.2, A.3, B
– Case A.1: With 1 rotation and recoloring 𝑂 1 nodes, we are done.

– Case A.2: With 1 rotation and recoloring 𝑂(1) nodes, we are in Case A.1.

– Case A.3: If 𝑥. parent is red, we are done after recoloring 𝑂(1) nodes,
if 𝑥. parent is black, the additional “black” moves towards
the root and we are again in Cases A.1, A.2, A.3, or B.

– Case B : 1 rotation and recoloring 𝑂 1 nodes yields A.1, A.2, or A.3,
if A.3, then 𝑥. parent is red

• Running time: 𝑂 tree depth = 𝑂(log 𝑛)

40

Red-Black Trees : Delete

Algorithms and Data StructuresFabian Kuhn

Red-Black Trees

• Binary search trees, that always have depth 𝑂 log 𝑛 .

• In 𝑂 log 𝑛 time, one can insert at new (key, value)-pair or delete
the (key, value) pair for a given key.

Dictionary Implementation

• Worst-case running time 𝑶 𝐥𝐨𝐠𝒏 for the operations

find, insert, delete, minimum, maximum, predecessor, successor

• Range query, where 𝑘 (key, value)-pairs are returned requires
running time 𝑂 𝑘 + log 𝑛 .

Comparison to hash tables

• amortized 𝑂 1 running time ⟺ worst-case 𝑂 log 𝑛 running time

• Binary search trees support many additional operations.
41

Red-Black Trees : Summary

Algorithms and Data StructuresFabian Kuhn

• Direct alternative to red-black trees

• AVL trees are binary search trees such that for every node 𝑣

𝑯 𝒗. 𝐥𝐞𝐟𝐭 − 𝑯 𝒗. 𝐫𝐢𝐠𝐡𝐭 ≤ 𝟏

• Instead of a color (red/black) each node stores the depth of its
subtree.

• AVL also always have depth 𝑂 log 𝑛
– even with a slightly better constant than red-black trees

• AVL condition can be maintained with 𝑂(log 𝑛) after every insert
or delete operation

• Comparison to red-black trees
– Find in AVL trees is slightly faster

– Insert / delete in AVL trees is slightly slower

42

AVL Trees

Algorithms and Data StructuresFabian Kuhn

• Parameter 𝑎 ≥ 2 and 𝑏 ≥ 2𝑎 − 1

• Keys/values are only stored in the leaves

• All leaves are at the same depth

• If the root is not a leaf, it has between 2 and 𝑏 children

• All other inner nodes have between 𝑎 and 𝑏 children
– A 𝑎, 𝑏 -tree is a search tree, but not a binary search tree!

Similar: 𝑩-Trees

• Here, the inner nodes also store keys

• For large 𝑎, 𝑏 one needs more space than for binary search trees.
– Because one has to provide space for blocks of size 𝑏

• The trees are however more shallow

• Particularly good, e.g., for file systems
(where memory access is expensive)

43

(𝑎, 𝑏)-Trees

Algorithms and Data StructuresFabian Kuhn

AA-Trees:

• similar to red-black trees (only right children can be red)

Splay Trees:

• Binary search trees with additional good properties
– Elements that have been accessed recently are closer to the root

– Good if several nodes can have the same key

– However, not strictly balanced

Skip Lists:

• Linked lists with additional shortcuts
– not a balanced search tree, but similar properties

44

Further Alternatives

(picture from wikipedia)

