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Do not open or turn until told so by the supervisor!

• Write your name and matriculation number on this page and sign the document.

• Your signature confirms that you have answered all exam questions yourself without any help, and that
you have notified exam supervision of any interference.

• You are allowed to use a summary of six handwritten A4 pages.

• No electronic devices are allowed.

• Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!

• You may write your answers in English or German language.

• Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise the
one yielding the minimal number of points is considered.

• Detailed steps might help you to get more points in case your final result is incorrect.

• The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain
your answer carefully and in sufficient detail.

• The keywords Give..., State... or Describe... indicate that you need to provide an answer solving the
task at hand but without proof or deep explanation (except when stated otherwise).

• You may use information given in a Hint without further explanation.

• Read each task thoroughly and make sure you understand what is expected from you.

• Raise your hand if you have a question regarding the formulation of a task or if you need additional
sheets of paper.

• A total of 45 points is sufficient to pass and a total of 90 points is sufficient for the best grade.

• Write your name on all sheets!

Task 1 2 3 4 5 6 Total

Maximum 42 24 16 16 12 10 120

Points
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Task 1: Short Questions (42 Points)

(a) Execute a delete-min operation (including the consolidate part) on the following Fibonacci
heap and give its final state. Intermediate steps might be helpful in case the final result is wrong.
The degree of each node is equal to its rank. (8 Points)
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(b) You are rich and have an unlimited supply of credit cards, but each has a limit of `. You need
to purchase k items which cost c1, . . . , ck, respectively such that ci ≤ `, for all i ∈ {1, 2, ..., k}.
Each item has to be paid from a credit card, but you must not exceed its limit `. You want to
minimize the number of credit cards that you need to use to make all k purchases. You decide on
the following ’First Fit’ strategy:

• For i from 1 to k do the following.

• If there is a credit that was already used but still has sufficient credit left to pay ci, purchase
the item with this credit card.

• Else, use a yet unused credit card and increase the number of used credit cards by one.

Show that this strategy gives you a 2-approximation of the minimum number of used credit cards
to purchase the items. (10 Points)

Hint: Show that at any point for any two distinct cards A and B that have been used to pay at
least one item, the sum over the costs of items payed with A and B is at least `. If you are not
able to show this, you can assume it in order to solve the problem and get partial points.

(c) Let A denote the n × n matrix filled with distinct positive integer values. An element is a
peak element if it is greater than or equal to its four neighbors, left, right, top and bottom e.g.
neighbors for A[i][j] are A[i][j − 1], A[i][j + 1], A[i − 1][j], and A[i + 1][j]. For corner elements,
missing neighbors are considered of negative values. The task is to find the index of a peak element.
Devise an algorithm that finds the index of a peak element in O(n log n), argue correctness and
running time. (14 Points)
Hint: First show that if we pick an arbitrary column j and if we then pick a row i such that
A[i][j] ≥ A[i′][j] for all i′ 6= i, then A[i][j] is a peak element or there exists a peak element in a
column j′ 6= j. If you cannot prove this fact, you can still use it to devise your algorithm.

(d) Let G = (V,E) be a graph and w : E → R+ be a function which assigns a weight to each
of the edges of G. Then the weight w(F ) of a subset F ⊆ E of the edges of G is defined as
w(F ) :=

∑
e∈F w(e). Now the weighted matching problem is to find a matching M in G that has

maximum weight.

Algorithm 1 Greedy Weighted Matching . Given G = (V,E), w : E → R+

1: M := ∅
2: while E 6= ∅ do
3: let e be the heaviest edge in E
4: add e to M
5: remove e and all edges incident to e from E

Show that the greedy algorithm has an approximation ratio of 1/2. (10 Points)
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Sample Solution

(a) This is one possible solution
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(b) Let xA be the costs payed with card A by First Fit (FF). W.l.o.g let A be a card that is ’filled’
before B by FF. When we pay the first item with card B, the item cost c is more then the
remaining space left on card A, cause otherwise it would have been added to A. Hence xA > `− c
and xB ≥ c what proofs the hint xA + xB > `.

Let k be the number of cards used by NF : Since there are
(
k
2

)
possible pairs of cards and each

pair has value > l, it follows l
(
k
2

)
< (k − 1)

∑
A xA (each card occurs in exactly k − 1 pairs) and

so
∑

A xA > l · k/2. Note that OPT can not better than using the full limit l on each card:
OPT ≥

∑
A xA/l > k/2. This implies a 2-approximation.

(c) Algorithm Idea: is to first find the maximum element in the middle column, i.e. in column
A[, n/2]. Suppose the maximum column element is located at A(i;n/2). If it is peak then we are
done. Otherwise there are two cases:
Case 1: A[i;n/2 − 1] > A[i;n/2]. In this case we recursively find the peak in the submatrix
containing the n rows and the first n/2 columns.
Case 2: A[i;n/2 + 1] > A[i;n/2]. In this case we recursively find the peak in the submatrix
containing the n rows and the last n/2 columns.
Finally, for the base case, if we only have one column left then we simply return the maximum
element in that column.

Correctness: First, we notice that if we pick an arbitrary column j, and assume that the global
maximum element of that column is at row i i.e. A[i][j], then if also A[i][j] is a peak element,
we are done. Otherwise, a peak element must exist in the left (resp. right) side of A[i][j] in case
A[i][j−1] > A[i][j] (resp. A[i][j] < A[i][j+1]). To see this assume w.l.o.g. that A[i][j] < A[i][j+1],
then we iteratively go through each column k = j+1., ...,m and find the global maximum element
of column k. Now we have two cases:
Case 1: it is a peak element, thus we are done and we stop.
Case 2: it is smaller than its neighbor to the right (but will be larger than its left, top,and bottom
neighbors). Thus we continue this same procedure with the next column k + 1.

Finally, we notice that if we continued this procedure until the last column m ( i.e. we still
haven’t found a peak element), then the global maximum element of column m must be a peak
element. The reason is that since going from column m− 1 to m means that the global maximum
element of column m − 1 (say at row i i.e. A[i][m − 1]) was smaller than its right neighbor i.e.
A[i][m]. Thus we notice that if say the global maximum element of column m is at row i′, then
A[i′][m] > A[i][m] > A[i][m − 1] and since A[i][m − 1] is the global maximum of column m − 1,
then A[i′][m] > A[,m − 1]. Therefore, A[i′][m] will be larger than its left neighbor; moreover, it
is also larger than its top and bottom neighbor; and since its right missing neighbor is negative,
thus it is still larger than it, we conclude A[i′][m] is a peak element. Note that the case where
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A[i][j] < A[i][j + 1] is symmetric.

And now to see why the recursion in the algorithm eventually gives a peak element, we notice the
following that: after doing the recursive divide and conquer step, we are always checking if the
global maximum of the middle column of the subarray we are working with is a peak element or
not and if it wasn’t, then we continue recursing on the bigger half side. The idea now is that this
bigger half side* is a subarray that we can show that a peak element (for the whole input array)
who is also a global maximum of its column always exists there and the algorithm is trying to find
them in this binary search fashion.
To show this we roughly explain how: These bigger half side subarrays are the subarrays we are
working with after each divide and conquer step of the algorithm, and they will have their left and
right boundaries to be at most two (previously considered ) ”middle’” columns (of some previous
subarrays considered in prior divide and conquer steps ); and for these ”middle” columns we have
already checked whether their corresponding global max was a peak element or not and it wasn’t.
Thus we can now continue similarly to the argument in the observation above and reach that in
the worst case the global maximum of either a boundary column of the original array or a column
neighboring a ”middle” boundary column will be a peak element in such subarray* and hence the
original input array.

Running Time: It takes O(n) time to find the max element on a column. Since the space where
a potential peak is, gets halved in each iteration, only O(log n) steps are needed (this argument is
similar to a binary search) to find the column of a peak. Hence O(n log n) iterations are required.
Additional Note: There is an slightly different algorithm that quarters the matrix in each step
and hence will find the peak in linear time.

(d) Every edge e removed by greedy can remove at most 2 optimal edges incident to it ( say we have
two optimal edges e1,e2), hence w(e) ≥ w(ei), where i ∈ {1, 2}.
And since the greedy algorithm is returns a maximal matching, then every optimal edge has to be
incident to some greedy edge ( or is a greedy edge). So 2w(M) =

∑
e∈M 2w(e) ≥

∑
e′∈OPT w(e′) =

w(OPT ) and the proof is done.
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Task 2: Miscellaneous Maximum Flow Questions (24 Points)

Note that the following three tasks are independent from each other.

(a) Consider the following flow network, where for each edge, the capacity (second number) and
a current flow value (first number) are given. Draw the residual graph with all the residual
capacities! In addition, give a best possible augmenting path (an augmenting path that improves
the current flow from s to t by as much as possible) and the resulting flow value of the network
(after augmenting along that path). (6 Points)
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(b) Let G be a network with source s, sink t, and integer capacities. Prove or disprove the following
statements:

• If all capacities are even then there is a maximum flow f such that f(e) is even for all edges
e. (4 Points)

• If all capacities are odd then there is a maximum flow f such that f(e) is odd for all edges
e. (4 Points)

(c) Given a flow network with unit capacity edges i.e., a directed graph G = (V,E), a source s ∈ V ,
and a sink t ∈ V and ce = 1 for every e ∈ E. You are also given a parameter k ∈ N. The goal is
to delete k edges so as to reduce the maximum s − t flow in G by as much as possible. In other
words, you should find a set of edges F ⊆ E so that |F | = k and the maximum s − t flow in
G′ = (V,E\F ) is as small as possible subject to this. Give a polynomial-time algorithm to solve
this problem, argue correctness, and running time. (10 Points)

Sample Solution

(a) The best possible augmenting path is: s → 1 → 2 → 4 → t. This path increases the flow by 5.
Hence, the resulting flow value is 22.

(b) • Dividing all capacities by two, we obtain a network with integral capacities. Therefore, it
has an integral maximum flow. Multiplying this flow by 2, we get an even maximum flow on
the original network.

Alternatively : think of Ford Fulkerson and notice that each time we find an augmenting path
to augment its smallest residual edge capacity must be even. Thus in every step of the Ford
Fulkerson algorithm, we add an even number to our current flow until no augmenting paths
exist, that’s when the Ford Fulkerson algorithm terminates producing an even flow.

• Counterexample:
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(c) Find a min st-cut of the given network G = (V,E). Let F be the set of cut edges.

We know that max flow in G has value f = |F |. If |F | ≤ k, then by removing these edges we drop
the max flow in G to 0. Otherwise,if |F | > k, we delete any subset of k edges of F from G. This
results in a new flow network graph G′ with a cut of capacity f − k which is also the new min cut
size, and hence G has max flow at most f − k.
This is true since otherwise if by removing k edges the new min cut size is < f − k, then this
means that after adding the k edges back this means that in G we have a cut size of < f , hence
there exists a smaller cut than our min cut of size f , a contradiction. It follows that reducing the
max flow in G from value f to f − k, achieved by our removal of k edges of the min cut F of G,
is indeed the biggest possible.

The runtime of the algorithm to find this subset of k edges is polynomial in the number of nodes,
since we simply run the Ford-Fulkerson algorithm on G to find a min cut ( since we have unit
edge capacities, then whichever implementation give a polynomial in n algorithm).
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Task 3: Amortized Analysis (16 Points)

Assume we have a sequence a1, . . . , an of tree elements that we want to store in a balanced binary
tree. That is, for any i = 1, . . . , n, the height of the tree after inserting element ai equals blog ic. We
hence fill a (initially empty) binary tree with the elements level by level. Additionally, we want to
store in each node the current height of the tree. For this purpose, whenever the height of the tree
increases (i.e., a new level is started), we increase the counter of each node by 1.
So we have two operations: If inserting ai does not increase the height of the tree, we simply insert it
by applying insert(ai). If inserting ai increases the height of the tree, we apply insert and raise(ai)
which inserts ai and increases the counter of each node.

Use either the accounting method or the potential function method to show that both operations have
constant amortized cost.

Hint: We do not require any additional property for the tree like the min-heap property or being a binary
search tree. Hence, inserting an element takes O(1) by using e.g. the array-implementation of balanced
binary trees. For simplicity, you may assume that insert has cost exactly 1 and insert and raise(ai)
has cost 1 + i.

Sample Solution

First observe that we apply insert and raise(ai) iff i is a power of two. If at step i we have an
insert and raise operation, the number of insert operations since the last insert and raise is
i/2− 1.

Accounting method: For each insert we pay an extra amount of 2. Then before an insert and raise

operation at step i we have 2(i/2−1) = i−2 on our bank account. The actual cost of insert and raise

is 1 + i. If we use the money from the bank account, we still need to pay 3. So we have that both
operations have amortized cost 3.

Potential Function: We define the potential function as twice the number of nodes on the bottom
level. Each insert operation increases the potential by 2. Before an insert and raise operation at
step i, the potential equals i. insert and raise sets the potential to 2, i.e., decreases it by i− 2. As
the actual cost of insert is 1 and the cost of insert and raise is 1+ i, we have that both operations
have amortized cost 3.
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Task 4: Online Independent Set (16 Points)

Given an undirected, simple graph G = (V,E), an independent set I ⊆ V is a subset of nodes such
that for all u, v ∈ I we have {u, v} /∈ E. The maximum independent set problem is the problem of
finding an independent set of maximum size.

(a) Show that a maximum independent set of a tree with n nodes has size at least n/2. (4 Points)

Now we consider an online version of this problem: Initially, we are given a set of nodes V without
edges. Then edges of G arrive one by one in an online fashion and we have to maintain an independent
set I of the graph. We start with I = V and after each arrival of an edge, we can decide to remove
nodes from I. If a node has been removed from I, we can not add it again later.

(b) Show that even if we know that G is a tree with n nodes, no deterministic online algorithm for
this problem has a better competitive ratio than n/2. (12 Points)

Hint: Use part (a) and show that for any n > 0, no deterministic online algorithm can guarantee an
independent set of size > 1.

Sample Solution

(a) A tree is a bipartite graph. In a bipartite graph (A ∪ B,E), both A and B are independent sets
and one has size at least n/2.

(b) Let A be a deterministic algorithm. We connect the nodes in V to a tree T such that in each
step, the set I which A maintains contains at most 1 node from T (that is, at most 1 non-isolated
node from V ). Finally, when there are no isolated nodes left, we have |I| = 1 but a maximum
independent set has size at least n/2 (by a)). We construct T inductively. Initially, T = ∅. Now
assume T contains k − 1 edges and |I ∩ T | ≤ 1. If |I ∩ T | = 0, we connect a node u ∈ V \ T with
an arbitrary node in T . After this step, if u ∈ I, we have |I ∩ T | = 1, otherwise |I ∩ T | = 0. Now
assume |I ∩ T | = 1 (before step k). Then we connect a node u ∈ V \ T with the node v ∈ I ∩ T .
If u was in I before, A has to remove either u or v (or both) from I such that either 0 or 1 nodes
remain in I ∩ T . As we never add an edge between two tree nodes, we do not obtain cycles and
hence T is indeed a tree.
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Task 5: Set of Strangers (12 Points)

Consider a group of n people. Suppose there are 2n pairs of people of this group that know each other.
We may model this situation as an undirected graph G = (V,E), in which the vertices are people and
we draw an edge between two people if and only if they know each other. The total number of edges
is therefore 2n. We want to find a huge group of strangers, i.e., a set of nodes where no edges connect
nodes within this set. To achieve this we use the following randomized algorithm:

• First, every node joins a set S ⊆ V independently with probability 1/4.

• Let ES ⊆ E be the set of edges where both endpoints are in S.

• Now, iterating through the edges e ∈ ES and deleting one arbitrary endpoint of e from S (if not
already deleted) gives us the final set of strangers S′.

Show that E[|S′|] ≥ n/8.

Hint: The number of people getting deleted from S can not be more than |ES |.

Sample Solution

It is clear by the construction that E[|S|] = n/4. For an edge e = (u, v), the probability that e ∈ ES

is, due to independence, the product of the probabilities that u ∈ S and v ∈ S, i.e., P (e ∈ ES) = 1/16.
Summing over all 2n edges gives E[|ES |] = 2n · 1/16 = n/8. Using the statement of the hint, we can
end the proof as follows E[|S′|] ≥ E[|S|]− E[|ES |] = n/8.

9



Task 6: Dynamic Programming (10 Points)

Given an array A of length n containing integer values. We define a longest increasing subsequence
(LIS) of A to be a sequence 0 ≤ i0 < i1 < ... < i` < n such that A[i0] < A[i1] < ... < A[i`] and ` is as
long as possible. For example, if A = [10; 13; 2; 4; 6; 4; 9], then an LIS is i0 = 2; i1 = 3; i2 = 4; i3 = 6
which is of length 4 and corresponding to the subsequence 2; 4; 6; 9. Notice that a longest increasing
subsequence need not need to be unique.

Devise a dynamic programming algorithm that returns the length of a longest increasing subsequence
in A and runs in O(n2). Argue its correctness and running time (and don’t forget to write down the
recursive relation).

Sample Solution

We notice that the LIS of a nonempty array [A(0); ...;A(i)] i.e. D[i] will have length at least one,
hence it has a last element A(j) for some 0 ≤ j ≤ i. Thus denote D′[i] to be the length of the LIS
of an array [A(0); ...;A(i)] such that the last element of the array i.e. A[i] is used. So we conclude
that D[i] = max0≤j≤iD

′[j] where D′[j] = 1 + max0≤k<j,A[k]<A[j]D
′[k] and if no such k exists then

D′[j] = 1.
A proposed dp algorithm using memorbrebrebrebization is the following:

Algorithm 2 LIS(n) . Given an array A with n elements and assume we have a global
dictionary memo initialized with Null

if n = 1 then return 1 . base case
if memo[n] 6= Null then return memo[n] . LIS was computed before

memo[n] ← max0<j≤n−1
(

max0≤k<j,A[k]<A[j] 1 + LIS(k + 1)
)

. Memoization
return memo[n]

Correctness: We argue by induction on i and prove the following statement: on input [A[0]; ...;A[i]]
D′[i], the length of the LIS including A[i],- is correct. This will prove correctness because the algorithm
returns at the end max0≤j≤iD

′[j], i.e. the longest increasing subsequence that ends at any location.

Base step: D′[0] = 1 is correct, because we can take the first element to be a subsequence of itself,
with is of length one.
Induction step: Suppose D′[0], ..., D′[i−1] are all correct. Now for D′[i] either the longest subsequence
is A[i] itself which is of length 1, or D′[i] uses a subsequence that starts earlier and ends at i, with the
prior index included before i is k ≥ 0, and this can only occur if A[k] < A[i], and if so, its length is
D′[k] + 1. The recursion takes the maximum over these possibilities, so D′[i] is correct. And since we
take the maximum of D′[i] over all i at the end and each D′[i] is correct, one of them should be the
LIS of the input.

Running time: Due to memoization we compute each value memo[k] for k ∈ {1, .., n} at most once.
Each computation of memo[k] costs at most O(n) in the current step (determining the maximum of at
most n numbers) not counting the cost of recursive calls. The total cost is therefore O(n2).
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