Algorithm Theory
 Exercise Sheet 2

Due: Wednesday, 9th of November, 2022, 11:59 pm

Exercise 1: Faster Polynomial Multiplication

Let $p(x):=2 x^{3}-x^{2}+4 x+4$. The goal is to compute $p(x)^{2}$ with the help of the FFT algorithm. Please, make use of the following sketch:

1. Illustrate the divide procedure of the algorithm. More precisely, for the i-th divide step, write down all the polynomials $p_{i j}$ for $j \in\left\{0, \ldots, 2^{i}-1\right\}$ that you obtain from further dividing the polynomials from the previous divide step $i-1$ (we define $p_{00}:=p$, and the first split is into p_{10} and p_{11} and so on...).
2. Illustrate the combine procedure of the algorithm. That is, starting with the polynomials of smallest degree as base cases, compute the DFT of $p_{i j}$ bottom up with the recursive formula given in the lecture. The recursion stops when $D F T_{8}\left(p_{00}\right)$ is computed.
3. Multiply the polynomials. More specific, give the point value representation of $p^{2}(x)$, i.e., $\left(w_{8}^{0}, y_{0}\right),\left(w_{8}^{1}, y_{1}\right), \ldots,\left(w_{8}^{7}, y_{7}\right)$.
4. Use the inverse DFT procedure from the lecture to get the final coefficients for $p(x)^{2}$. To do that efficiently, first compute the $\operatorname{DFT}_{8}(q)$ where $q(x):=y_{0}+y_{1} \cdot x+\ldots+y_{7} \cdot x^{7}$ and then compute the coefficients a_{k} for $k \in\{0,1, \ldots, 7\}$.

Write down all intermediate results to get partial points in the case of a typo.

Exercise 2: FFT Application

(6 Points)
Let A, B be two sets of integers between 0 and n i.e., $A, B \subseteq\{0,1,2, \ldots, n\}$. We define two random variables X_{A} and X_{B}, where X_{A} is obtained by choosing a number uniformly at random from A and X_{B} is obtained by choosing a number uniformly at random from B. We further define the random variable $Z:=X_{A}+X_{B}$. Note that Z can take values in the range $0, \ldots, 2 n$.
Give an $O(n \log n)$ algorithm to compute the distribution of Z. Hence, the algorithm should compute the probability $P(Z=z)$ for all $z \in\{0, \ldots, 2 n\}$. Note that $\sum_{z=0}^{2 n} P(Z=z)=1$. You can use the algorithms of the lecture as a black box. State the correctness of your algorithm and also explain the runtime!

