
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, G. Schmid

Algorithm Theory

Exercise Sheet 3
Due: Wednesday, 16th of November, 2022, 11:59 pm

Exercise 1: Quick Greedy Analysis (7 Points)

Given the following problems and proposed greedy strategies either formally prove or disprove (e.g.
by counterexample) that the proposed greedy strategy is optimal for the given problem:

1. Problem: Minimum Dominating Set (2 Points)
In an undirected graph G = (V,E), with n = |V |.
We want to find the smallest set S such that every node v ∈ V either is in S, or has a neighbor
in S (we say v is dominated by S).
Or equivalently:

∀v ∈ V : v ∈ S ∨ ∃u ∈ S : (v, u) ∈ E

Strategy: Pick node that covers the most undominated neighbors
Nodes can be coloured in 3 colours: white, black or grey. White represents nodes that are not
yet dominated. Black represents nodes that are already part of our dominating set and grey
represents nodes that are adjacent to a black node.
At the beginning all nodes are white. Then until no more white nodes exist, pick the node v∗

that has the most white neighbous, or formally:

v∗ = arg max
v∈V

degW (v)

where degW (v) is the number of white nodes adjacent to v.
Then color v∗ black and all of the nodes adjacent to v∗ grey. Repeat until no white nodes remain.
At the end all of the black nodes together form the Dominating Set.

2. Problem: Most finished jobs (3 Points)
We want to schedule n jobs a1, a2, . . . , an with durations d1, d2, . . . , dn. A job ai is considered
finished at time t if its starting time si fulfils the condition si + di ≤ t.
At each point in time there can be only one job currently worked on. We define this condition
formally as: compute s1, s2, ..., sn such that they satisfy

∀i, j ∈ {1, . . . , n}, j 6= i : sj /∈ {si, si + 1, . . . , si + di}

or in words, that no job starts while another job is currently being worked on.
Our goal is to compute s1, s2, ..., sn such that at every point in time t the number of already
finished jobs is maximized.

Strategy: Pick shortest job
Whenever possible, meaning that whenever there is no job currently being worked on, pick the
job with the shortest duration, that is not yet finished.

3. Problem: Max-Cut (2 Points)
In an undirected graph G = (V,E), with n = |V |.
We define a cut S ⊂ V to be a separation of V into two distinct subsets S and V \S. We define
the weight of a cut w(S) = |{(u, v) | u ∈ S, v ∈ V \S}| to be the number of edges between the
two sets S and V \S.
The goal is to find a maximum weight cut.

Strategy: Pick node that increases the cut the most
We define the relative-degree of v ∈ V with respect to a subset A ⊂ V to be

dA(v) = |{u ∈ A | (v, u) ∈ E}|

being the number of edges from v to nodes in A.

Again we start with an empty set S = ∅ and in every step try to get the biggest increase to our
cut-weight. For this we either add a node v∗ to our set S = S ∪ {v∗}, or if already v∗ ∈ S we
remove it from S = S\{v∗}, where we determine v∗ by the following characteristic:

v∗ = arg max
v∈V

{
dS(v)− dV \S(v), for v ∈ S
dV \S(v)− dS(v), for v ∈ V \S

}
In words, we pick a v∗ such that the increase to the cut would be biggest. Hence every such step
will give us an improvement to our cut weight.
We stop once no v ∈ V \S can give us an improvement.

Exercise 2: Greedy Satisfying (13 Points)

We look at a boolean formula φ of n clauses in 3-Conjunctive Normal Form (CNF), meaning that it
is given as a ”logical and”:∧ of clauses that only use ”logical or’s”:∨. In each clause we have exactly
3 literals, so an example would be:

φ = (a ∨ b̄ ∨ c) ∧ (c̄ ∨ d ∨ e) ∧ (ā ∨ d̄ ∨ b̄)

Note: ā stands for the negation of the variable a.

Devise an algorithm based on a greedy strategy to satisfy as many clauses as possible. Give an expla-
nation why your algorithm is a greedy algorithm.
Make an effort to make the algorithm efficient! Argue the runtime of your algorithm, the runtime
of your algorithm must be at most polynomial in n. You will most likely not be able to devise an
algorithm that can satisfy all clauses/ that is optimal, since this problem is NP-hard. Therefor give
an algorithm that is ”as good as possible”.

Prove a performance guarantee for your algorithm. More specifically this means, that you should
prove that your algorithm can not be arbitrarily bad. Give a bound on 1

2 < α ≤ 1, such that your
algorithm satisfies at least an α-fraction of clauses.

Hint: For the performance analysis, it might be helpful to think about the number of literals that have
not been assigned thus far and look at how this number changes after assigning a literal.

