
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, G. Schmid

Algorithm Theory

Exercise Sheet 5
Due: Wednesday, 30th of November 2022, 11:59 pm

Exercise 1: Potential Function Method (12 Points)

You plan to implement a hash table. Since you do not know how many keys will be inserted (or deleted)
into that hash table, you implement the hash table such that it’s size dynamically grows/shrinks
depending on the number of keys that are currently stored. To archive that property, you implement
an insert and a delete function that work as follows. Let n be the number of keys in the hash table
and let s be the current table size.

• Before you insert a new key x to the table, you check if n < 4
5 · s. If this is the case then

you simply add x. We say for simplicity this can be done in 1 time unit. If on the other hand
n ≥ 4

5 · s, you set up a new hash table of size 2s and paste all keys (including x) into the new
table. We assume this can be done in s time units1.

• To delete an already stored key x from the hash table, you first check if n > 1
5 · s. If this is the

case then delete x within 1 time unit. If otherwise n ≤ 1
5 · s and s > 10, create a new hash table

of size s/2 and copy all values except x to the new table. By assumption, this step takes s time
units.

Initially, the hash table is empty. When the fist key x is added, you build an initial table of fixed size,
say s0 := 10, and insert x. Assume that this initial step can also be done in 1 time unit. Note that
by this initial size and the definition of the delete method we have s ≥ 10 at any point.

Your task is to show that the amortized running times of insert and delete are O(1). To do that,
use the Potential Function Method from the lecture i.e., find a potential function φ(n, s) and show
that this function is sufficient to achieve constant amortized time for any insert and delete operation.

Exercise 2: Union-Find (2+2+4 Points)

In the lecture we have seen two heuristics (i.e., the union-by-size and the union-by-rank heuristic)
to implement the union-find data structure. In this exercise we will focus on the union-by-rank
heuristic only! Note that the rank is basically the height of the underlying tree. This is not true if
we use path compression as the height of the tree might change; but the rank is still an upper bound
on the actual height of the tree. In the following tasks assume a disjoint forest implementation using
union-by-rank heuristic and path compression.

(a) Give the pseudocode for union(x, y).
Remark: Use x.parent to access the parent of some node x and use x.rank to get its rank. The
find(x) operation is implemented as stated in the lecture using path compression.

(b) Show that the height of each tree (in the disjoint forest) is at most O(log n) where n is the
number of nodes.

1For a simpler calculation we use normalized time units, such that all the operations that would take O(1) time will
take at most 1 time unit and operations that would take O(s) time will take at most s time units.



(c) Show that the above’s bound is tight i.e., give an example execution (of makeSet’s and union’s)
that creates a tree of height Θ(log n). Proof your statement!


