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Exercise 1: A Matching Reduction (12 Points)

Let G = (V,E) be an undirected graph, a vertex cover C ⊆ V is a set of nodes that includes at least
one endpoint of every edge of the graph. A minimum vertex cover is a vertex cover of minimum size.

(a) Show that the size of a maximum matching is always at most that of the minimum vertex cover.
(2 Points)

Let G = (V,E) be a bipartite graph where A,B are the bipartition of the vertex set V and the goal
now is to efficiently construct a minimum vertex cover of G by showing that the size of the maximum
matching and minimum vertex cover are in fact the same. For that purpose, suppose that we are
given a maximum matching M∗ of G. A node v ∈ V is said to be unmatched if all its incident edges
are unmatched edges in M∗ and let U be the set of unmatched nodes in A (possibly empty). Let
L be the set of vertices that are either in U or are connected to U by alternating paths (paths that
alternate between edges that are in the matching and edges that are not in the matching). Define
C := (A \ L) ∪ (B ∩ L).

(b) Prove that C is a vertex cover. (3 Points)

(c) Show that |C| = |M∗|. (4 Points)

(d) Give a polynomial time algorithm that computes a minimum vertex cover in bipartite graphs,
argue correctness, and analyze its running time. (3 Points)

Exercise 2: Unique ID’s Assignment (8 Points)

Imagine that we have n processes such that every process is connected to all other processes with
communication channels i.e. the network topology is a complete graph. Now if all processes are
started with the same input, simultaneously, and all of them run the same deterministic algorithm,
how could they ever end up in different states? The answer is that they can’t!
However, with some additional assumptions such as assigning a unique ID for every process they might
be able to. And one way of achieving such assignement is via randomly generating the ID’s e.g. by
running the following randomized algorithm: each process independently and uniformly at random
picks an ID from the set {1, 2, ..., n2} and sticks to it as its ID.

(a) What is the probability that all processes succeed in choosing a unique ID at the end of the
algorithm? (3 Points)

(b) Modify the algorithm in two different ways such that with high probability, all processes succeed
in choosing a unique ID at the end of the algorithm. (5 Points)
Remark: for both approaches, we want an algorithm with a fixed running time ( which can be at
most O(log n)) that outputs a correct solution with high probablity.


