Algorithm Theory
 Exercise Sheet 11

Due: Wednesday, 25th of January, 2023, 11:59 pm

Exercise 1: Max Cut

Let $G=(V, E)$ be a simple undirected graph. Consider the following randomized algorithm: Every node $v \in V$ joins set S with probability $1 / 2$. You can assume that $(S, V \backslash S)$ actually forms a cut i.e. $\emptyset \neq S \neq V$.
(a) Show that with probability at least $1 / 3$ this algorithm outputs a cut which is a 4 -approximation to the maximum cut (i.e., the cut of maximum possible size)
(5 Points)
Hint: Apply the Markov inequality to the number of edges that do not cross the cut. For a non-negative random variable X, the Markov inequality states that for all $t>0$ we have

$$
P(X \geq t) \leq \frac{E[X]}{t}
$$

(b) How can you use the above's algorithm to devise a 4-approximation with probability at least $1-\left(\frac{2}{3}\right)^{k}$ for any integer $k>0$?
(3 Points)

Exercise 2: Randomized Coloring

Let $G=(V, E)$ be a simple, undirected graph with maximum degree Δ. A (node) coloring of the graph is an assignment of colors to the nodes in a way that no two adjacent nodes are assigned with the same color. More formal: A coloring is a mapping $\phi: V \rightarrow C$ of nodes in V to some color space C s.t. $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$.
Consider the following algorithm to assign colors from the colors pace $C=\{1,2, \ldots, \Delta+1\}$ to the nodes. Let L_{v} be the lists of available colors of v, that initially is set to $L_{v}:=C$.

```
Algorithm 1 Randomized Coloring
Ensure: \(\phi\) is a proper \(\Delta+1\) coloring
    Let \(L_{v}:=\{1,2, \ldots, \Delta+1\}\)
    for each uncolored node \(v \in V\) in parallel do
        \(v\) becomes active with probability \(p=\frac{1}{2}\)
        if \(v\) is active then
            Let \(v\) choose a color \(x_{v} \in L_{v}\) uniformly at random \(\triangleright\) same probability for each color in \(L_{v}\)
            if no neighbor \(u\) picked \(x_{v}\) as well then
                \(\phi(v):=x_{v} \quad \triangleright v\) is colored now!
        Delete colors of neighbors from \(L_{v}\)
```

Note that in every iteration, the size of L_{v} of an uncolored node v is larger than the number of uncolored neighbors of v.
(a) Show that a node v that is still uncolored will be colored in the next iteration with probability at least $1 / 4$.
Hint: Assume v is active and has k uncolored neighbors. What is the probability that v gets colored?
(b) After how many iterations is a node $v \in V$ colored in expectation?
(c) Show that Algorithm 1 terminates in $O(\log n)$ iterations with high probability.

That is for a given constant $c>0$, all nodes are colored within $O(\log n)$ iterations with probability at least $1-\frac{1}{n^{c}}$.
(4 Points)
Hint: Use the result of a) for tasks b) and c) even if you didn't manage to come up with a solution.

