

Algorithm Theory Exercise Sheet 11

Due: Wednesday, 25th of January, 2023, 11:59 pm

Exercise 1: Max Cut

Let G = (V, E) be a simple undirected graph. Consider the following randomized algorithm: Every node $v \in V$ joins set S with probability 1/2. You can assume that $(S, V \setminus S)$ actually forms a cut i.e. $\emptyset \neq S \neq V$.

(a) Show that with probability at least 1/3 this algorithm outputs a cut which is a 4-approximation to the maximum cut (i.e., the cut of maximum possible size) (5 Points) Hint: Apply the Markov inequality to the number of edges that do not cross the cut. For a non-negative random variable X, the Markov inequality states that for all t > 0 we have

$$P(X \ge t) \le \frac{E[X]}{t}$$

(b) How can you use the above's algorithm to devise a 4-approximation with probability at least $1 - \left(\frac{2}{3}\right)^k$ for any integer k > 0? (3 Points)

Exercise 2: Randomized Coloring

Let G = (V, E) be a simple, undirected graph with maximum degree Δ . A (node) coloring of the graph is an assignment of colors to the nodes in a way that no two adjacent nodes are assigned with the same color. More formal: A coloring is a mapping $\phi : V \to C$ of nodes in V to some color space C s.t. $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$.

Consider the following algorithm to assign colors from the colors pace $C = \{1, 2, ..., \Delta + 1\}$ to the nodes. Let L_v be the lists of **available** colors of v, that initially is set to $L_v := C$.

Algorithm 1 Randomized Coloring **Ensure:** ϕ is a proper $\Delta + 1$ coloring 1: Let $L_v := \{1, 2, \dots, \Delta + 1\}$ 2: for each uncolored node $v \in V$ in parallel do v becomes active with probability $p = \frac{1}{2}$ 3: 4: if v is active then Let v choose a color $x_v \in L_v$ uniformly at random \triangleright same probability for each color in L_v 5: if no neighbor u picked x_v as well then 6: $\triangleright v$ is colored now! 7: $\phi(v) := x_v$ Delete colors of neighbors from L_v 8:

Note that in every iteration, the size of L_v of an uncolored node v is larger than the number of uncolored neighbors of v.

(8 Points)

(12 Points)

- (a) Show that a node v that is still uncolored will be colored in the next iteration with probability at least 1/4.
 (6 Points) Hint: Assume v is active and has k uncolored neighbors. What is the probability that v gets colored?
- (b) After how many iterations is a node $v \in V$ colored in expectation? (2 Points)
- (c) Show that Algorithm 1 terminates in $O(\log n)$ iterations with high probability. That is for a given constant c > 0, all nodes are colored within $O(\log n)$ iterations with probability at least $1 - \frac{1}{n^c}$. (4 Points) Hint: Use the result of a) for tasks b) and c) even if you didn't manage to come up with a solution.