Algorithm Theory
 Exercise Sheet 13

Due: Wednesday, 8th of February, 2023, 11:59 pm

Exercise 1: A Good Approximate MVC

Let $G=(A \cup B, E)$ be a bipartite graph, and let $k \geq 1$ be an integer parameter. Assume that M is a matching of G s.t. there exists no augmenting paths of length at most $2 k-1$ w.r.t. M in G. The goal is now to adapt exercise 1 in sheet 10 to compute a $\left(1+\frac{1}{k}\right)$-approximate minimum vertex cover of G. To do so we are going to partition the sets A and B as follows: first let $S \subseteq V$, $N(S):=\{u \in V \mid\{u, v\} \in E$ for some $v \in S\}$, and $M(S)=\{u \in V \mid\{u, v\} \in M$ for some $v \in S\}$. Next, let A_{0} be the set of unmatched nodes in A and $B_{0}:=\emptyset$. Thus for $i \in\{1,2, \ldots, k\}$, we define the sets $B_{i}:=N\left(A_{i-1}\right) \backslash B_{i-1}$ and $A_{i}:=M\left(B_{i}\right)$. Finally, let $B_{k+1}:=B \backslash \bigcup_{i=0}^{k} B_{i}$ and $A_{k+1}:=A \backslash \bigcup_{i=0}^{k} A_{i}$. NB: you can w.l.o.g assume your bipartite graph to be connected.
(a) Prove that for every $i \in\{1,2, \ldots, k\}, C_{i}:=\left(\bigcup_{j=i}^{k+1} A_{j}\right) \cup\left(\bigcup_{j=1}^{i} B_{j}\right)$ is a vertex cover.

Consider i^{*} such that $\left|B_{i^{*}}\right| \leq\left|B_{i}\right|$ for all $i \in\{1,2, \ldots, k\}$. We will now show that

$$
C_{i^{*}}:=\left(\bigcup_{j=i^{*}}^{k+1} A_{j}\right) \cup\left(\bigcup_{j=1}^{i^{*}} B_{j}\right)
$$

is a vertex cover of size at most $\left(1+\frac{1}{k}\right)$ OPT, where OPT is the size of the minimum vertex cover of G.
(b) Show that there cannot exist an unmatched node in $\bigcup_{i=1}^{k} B_{i}$.
(c) For all $i \in\{1,2, \ldots, k\}$ what can you say about the size of A_{i} and B_{i} ?
(d) Show that $\left|C_{i^{*}}\right| \leq\left(1+\frac{1}{k}\right) \cdot|M|$ and deduce that $C_{i^{*}}$ is our desired vertex cover.

Exercise 2: The Densest Subgraph

Let $G=(V, E)$ be a graph, $S \subseteq V$, and $E(S):=\{\{u, v\} \in E \mid u, v \in S\}$. We define the density of S to be $\operatorname{den}(S):=\frac{|E(S)|}{|S|}$. In the densest subgraph problem, the goal is to find a subset $S^{*} \subseteq V$ that maximizes the $\operatorname{den}(S)$ i.e. $\operatorname{den}\left(S^{*}\right):=\max _{S \subseteq V} \operatorname{den}(S)$. In this exercise, we will study a greedy algorithm that gives a $\frac{1}{2}$-approximation to the problem.

```
Algorithm 1 Greedy Densest Subgraph
\(\triangleright\) input graph \(G=(V, E)\)
    Let \(S:=V, S^{\prime}=V\), and \(\operatorname{den}\left(S^{\prime}\right)=\operatorname{den}(V)\)
    while \(S \neq \phi\) do
        Find \(i_{\min } \in S\), the vertex of minimum degree in \(G(S)\). Delete it from \(S\).
        if \(\operatorname{den}(S)>\operatorname{den}\left(S^{\prime}\right)\) then \(S^{\prime}=S\)
    return \(S^{\prime}\)
```

Consider the following: for each edge $\{i, j\} \in E$, we assign this edge to either i or j arbitrarily. Let $d(i)$ be the edges assigned to $i \in V$. Define $d_{\text {max }}:=\max _{i \in V} d(i)$.
(a) Show that $\max _{S \subseteq V} \operatorname{den}(S) \leq d_{\max }$ for any assignement of edges.
(b) Consider the following edge assignement where each edge assigns itself to the first incident vertex deleted by the algorithm. Show that $d_{\max } \leq 2 \alpha$, where $\alpha:=\operatorname{den}\left(S^{\prime}\right)$ and S^{\prime} is the subset returned by the greedy algorithm. Deduce that the greedy algorithm outputs a $\frac{1}{2}$-approximation to the problem.
(5 Points) Hint: use an average argument with respect to the degrees of nodes and the fact that the average degree of a node in graph G is $\frac{\sum_{v \in V} \text { degree(v) }}{|V|}$.

