# Algorithm Theory <br> Exercise Sheet 14 

Due: Wednesday, 15th of February 2023, 11:59 pm

## Exercise 1: Ticket Problem

## (10 Bonus Points)

A student from Freiburg is doing a one-year internship in Berlin, hence he will have to commute between the two cities. A train ticket from Freiburg to Berlin as well as from Berlin to Freiburg $\operatorname{costs} p_{0}>0$ Euros. However, to save money there is a special ticket called 'RailCard50' that is valid for the whole year and allows buying train tickets for half of the price. The RailCard50 itself costs $p_{1}=10 \cdot p_{0}$ Euros. Consider this problem as an online problem, where the number of train rides $x \geq 1$ between these cities during the year is not known beforehand. So before each trip, if not bought yet, the student must make a decision on whether or not to buy the RailCard50.
(a) Describe the best offline strategy $O P T$ ( $x$ is known beforehand) and give the costs as function depending on $x$.
(2 Points)
(b) Assume the student decides on the online strategy $A L G_{1}$ ( $x$ is unknown), that is to buy the RailCard50 before the first train ride. Give an upper bound on the strict competitive ratio of $A L G_{1}$.
(c) Give an online strategy $A L G_{2}$ that is strictly $\frac{3}{2}$-competitive and prove it.

## Exercise 2: Online Bin Packing

The Online Bin Packing problem is a variant of the Knapsack problem. Here we are given an unlimited number of bins, each with capacity 1 . We get a sequence of items $x_{1}, x_{2}, \ldots$, in online fashion and are required to place them into the bins as we receive them (once placed we are not allowed to put an item into another bin). Each item $x_{i}$ comes with an individual weight $0<w_{i} \leq 1$. The goal is to minimize the number of used bins under the constraint that the sum of the weights of the items in one bin do not exceed its capacity.
In this task we consider the First-Fit (FF) online strategy: FF fixes the order of bins arbitrarily w.l.o.g. say $b_{1}, b_{2}, \ldots$, and places each item into the first bin (i.e., the bin with the smallest index) that has enough capacity left to hold the item.
(a) Show that FF is strictly 2 -competitive.
(7 Points)
Hint: Let $C_{i}$ be the total weight of items in bin $b_{i}$. Show that for a given bin $b_{k}$ containing at least one element the following is true: $\forall 1 \leq i<k: C_{i}+C_{k}>1$.
(b) Give a sequence of items for which the strictly competitive ratio of FF is no better than $\frac{3}{2}$. (3 Points)

