

(7 Points)

Algorithms and Datastructures Winter Term 2023 Sample Solution Exercise Sheet 3

Due: Wednesday, November 15th, 12pm

Exercise 1: Bucket Sort

Bucketsort is an algorithm to stably sort an array A[0..n-1] of n elements where the sorting keys of the elements take values in $\{0, \ldots, k\}$. That is, we have a function key assigning a key $key(x) \in \{0, \ldots, k\}$ to each $x \in A$.

The algorithm works as follows. First we construct an array B[0..k] consisting of (initially empty) FIFO queues. That is, for each $i \in \{0, ..., k\}$, B[i] is a FIFO queue. Then we iterate through A and for each $j \in \{0, ..., n-1\}$ we attach A[j] to the queue B[key(A[j])] using the function enqueue.

Finally we empty all queues B[0], ..., B[k] using dequeue and write the returned values back to A, one after the other. After that, A is sorted with respect to key and elements $x, y \in A$ with key(x) = key(y) are in the same order as before.

Implement *Bucketsort* based on this description¹. You can use the template BucketSort.py which uses an implementation of FIFO queues that are available in Queue.py und ListElement.py.²

Sample Solution

Cf. BucketSort.py in the public repository.

Exercise 2: Radix Sort

(13 Points)

Assume we want to sort an array A[0.n-1] of size n containing integer values from $\{0,\ldots,k\}$ for some $k \in \mathbb{N}$. We describe the algorithm *Radixsort* which uses *Bucketsort* as a subroutine. Let $m = \lfloor \log_b k \rfloor$. We assume each key $x \in A$ is given in base-b representation, i.e., $x = \sum_{i=0}^{m} c_i \cdot b^i$ for some $c_i \in \{0,\ldots,b-1\}$. First we sort the keys according to c_0 using *Bucketsort*, afterwards we sort according to c_1 and so on.³

- (a) Implement *Radixsort* based on this description. You may assume b = 10, i.e., your algorithm should work for arrays containing numbers in base-10 representation. Use *Bucketsort* as a subroutine. If you did not solve task 1, you may use a library function (e.g., sorted) as alternative to *Bucketsort*. (7 Points)
- (b) Compare the runtimes of *Bucketsort* and *Radixsort*. For both algorithms and each $k \in \{2 \cdot i \cdot 10^4 \mid i = 1, ..., 60\}$, use an array of fixed size $n = 10^4$ with randomly chosen keys from $\{0, ..., k\}$ as input and plot the runtimes. Shortly discuss your results in experiences.txt. (3 Points)
- (c) Explain the asymptotic runtime of your implementations of *Bucketsort* und *Radixsort* depending on n and k. (3 Points)

 $^{^1\}mathrm{Remember}$ to make unit-tests and to add comments to your source code.

 $^{^{2}}$ You are allowed to use librarys, but note that the names of the methods may differ.

³The *i*-th digit c_i of a number $x \in \mathbb{N}$ in base-*b* representation (i.e., $x = c_0 \cdot b^0 + c_1 \cdot b^1 + c_2 \cdot b^2 + \ldots$), can be obtained via the formula $c_i = (x \mod b^{i+1}) \operatorname{div} b^i$, where mod is the modulo operation and div the integer division.

Sample Solution

- (a) Cf. RadixSort.py in the public repository.
- (b) Cf. 1. We see that *Bucketsort* is linear in k. For *Radixsort* the situation is not that clear. At the first sight, the runtime could be constant, but upon closer examination we see steps at $k = 10^5$ and $k = 10^6$. The reason is that *Radixsort* calls *Bucketsort* for each digit in the input and the number of these digits (and therefore the calls of *Bucketsort*) is increased from 5 to 6 at $k = 10^5$ (respectively 6 to 7 at $k = 10^6$). This is also the reason why *Bucketsort* is faster for small k (the runtimes are roughly even when $n \log_{10}(k) = n + k$ holds).
- (c) Bucketsort goes through A twice, once to write all values from A into the buckets and another time to write the values back to A. This takes time $\mathcal{O}(n)$ as writing a value into a bucket and from a bucket back to A costs $\mathcal{O}(1)$. Additionally, Bucketsort needs to allocate k empty lists and write it into an array of size k which takes time $\mathcal{O}(k)$. Hence, the runtime is $\mathcal{O}(n+k)$.

Radixsort calls Bucketsort for each digit. The keys have $m = \mathcal{O}(\log k)$ digits, so we call Bucketsort $\mathcal{O}(\log k)$ times. One run of Bucketsort takes $\mathcal{O}(n)$ here as the keys according to which Bucketsort sorts the elements are from the range $\{0, \ldots, 9\}$. The overall runtime is therefore $\mathcal{O}(n \log k)$.

Abb. 1: Plot for exercise 2 b).