
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
G. Schmid

Algorithms and Datastructures

Winter Term 2023

Sample Solution Exercise Sheet 3
Due: Wednesday, November 15th, 12pm

Exercise 1: Bucket Sort (7 Points)

Bucketsort is an algorithm to stably sort an array A[0..n−1] of n elements where the sorting keys of the
elements take values in {0, . . . , k}. That is, we have a function key assigning a key key(x) ∈ {0, . . . , k}
to each x ∈ A.
The algorithm works as follows. First we construct an array B[0..k] consisting of (initially empty)
FIFO queues. That is, for each i ∈ {0, . . . , k}, B[i] is a FIFO queue. Then we iterate through A and
for each j ∈ {0, . . . , n− 1} we attach A[j] to the queue B[key(A[j])] using the function enqueue.
Finally we empty all queues B[0], ..., B[k] using dequeue and write the returned values back to A, one
after the other. After that, A is sorted with respect to key and elements x, y ∈ A with key(x) = key(y)
are in the same order as before.
Implement Bucketsort based on this description1. You can use the template BucketSort.py which
uses an implementation of FIFO queues that are available in Queue.py und ListElement.py.2

Sample Solution

Cf. BucketSort.py in the public repository.

Exercise 2: Radix Sort (13 Points)

Assume we want to sort an array A[0..n−1] of size n containing integer values from {0, . . . , k} for
some k ∈ N. We describe the algorithm Radixsort which uses Bucketsort as a subroutine.
Let m = blogb kc. We assume each key x ∈ A is given in base-b representation, i.e., x =

∑m
i=0 ci · bi

for some ci ∈ {0, . . . , b − 1}. First we sort the keys according to c0 using Bucketsort, afterwards we
sort according to c1 and so on.3

(a) Implement Radixsort based on this description. You may assume b = 10, i.e., your algorithm
should work for arrays containing numbers in base-10 representation. Use Bucketsort as a sub-
routine. If you did not solve task 1, you may use a library function (e.g., sorted) as alternative
to Bucketsort. (7 Points)

(b) Compare the runtimes of Bucketsort and Radixsort. For both algorithms and each k ∈ {2 · i · 104 |
i = 1, . . . , 60}, use an array of fixed size n = 104 with randomly chosen keys from {0, . . . , k} as
input and plot the runtimes. Shortly discuss your results in experiences.txt. (3 Points)

(c) Explain the asymptotic runtime of your implementations of Bucketsort und Radixsort depending
on n and k. (3 Points)

1Remember to make unit-tests and to add comments to your source code.
2You are allowed to use librarys, but note that the names of the methods may differ.
3The i-th digit ci of a number x ∈ N in base-b representation (i.e, x = c0 · b0 + c1 · b1 + c2 · b2 + . . .), can be obtained

via the formula ci = (x mod bi+1) div bi, where mod is the modulo operation and div the integer division.

https://docs.python.org/3/library/queue.html#queue.SimpleQueue


Sample Solution

(a) Cf. RadixSort.py in the public repository.

(b) Cf. 1. We see that Bucketsort is linear in k. For Radixsort the situation is not that clear. At the
first sight, the runtime could be constant, but upon closer examination we see steps at k = 105

and k = 106. The reason is that Radixsort calls Bucketsort for each digit in the input and the
number of these digits (and therefore the calls of Bucketsort) is increased from 5 to 6 at k = 105

(respectively 6 to 7 at k = 106). This is also the reason why Bucketsort is faster for small k (the
runtimes are roughly even when n log10(k) = n + k holds).

(c) Bucketsort goes through A twice, once to write all values from A into the buckets and another
time to write the values back to A. This takes time O(n) as writing a value into a bucket and
from a bucket back to A costs O(1). Additionally, Bucketsort needs to allocate k empty lists and
write it into an array of size k which takes time O(k). Hence, the runtime is O(n + k).

Radixsort calls Bucketsort for each digit. The keys have m = O(log k) digits, so we call Bucketsort
O(log k) times. One run of Bucketsort takes O(n) here as the keys according to which Bucketsort
sorts the elements are from the range {0, . . . , 9}. The overall runtime is therefore O(n log k).

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	0 	200000 	400000 	600000 	800000 	1x106 	1.2x106

el
ap
se
d
	t
im
e	
in
	m
s

maximum	key	k

BucketSort
RadixSort

Abb. 1: Plot for exercise 2 b).


