

(10 Points)

Algorithms and Datastructures Winter Term 2023 Sample Solution Exercise Sheet 5

Due: Wednesday, November 29th, 2pm

Exercise 1: Bad Hash Functions

Let m be the size of a hash table and $M \gg m$ the largest possible key of the elements we want to store in the table. The following "hash functions" are poorly chosen. Explain for each function why it is not a suitable hash function.

(a)
$$h: x \mapsto \lfloor \frac{x}{m} \rfloor \mod m$$
 (1,5 Points)

(b) $h: x \mapsto (2x+1) \mod m \ (m \text{ even}).$ (1,5 Points)

(c)
$$h: x \mapsto (x \mod m) + \lfloor \frac{m}{x+1} \rfloor$$
 (1,5 Points)

- (d) For each calculation of the hash value of x one chooses for h(x) a uniform random number from $\{0, \ldots, m-1\}$ (1,5 Points)
- (e) $h: x \mapsto \lfloor \frac{M}{x \cdot p \mod M} \rfloor \mod m$, where p is prime and $\frac{M}{2} (2 Points)$
- (f) For a set of "good" hash functions h_1, \ldots, h_ℓ with $\ell \in \Theta(\log m)$, we first compute $h_1(x)$, then $h_2(h_1(x))$ etc. until $h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$. That is, the function is $h: k \mapsto h_\ell(h_{\ell-1}(\ldots h_1(x))\ldots)$ (2 Points)

Sample Solution

- (a) Values are not scattered. m subsequent values have the same hash value.
- (b) Only half of the hash table is used. The cells $0, 2, 4, \ldots, m-2$ stay empty.
- (c) h(m-1) = m, but the table has only the positions $0, \ldots, m-1$.
- (d) The hash value of x can not be reproduced.
- (e) First, consider the function $h': x \mapsto \lfloor \frac{M}{x} \rfloor$ mod m. h' maps all x > M/2 (i.e., half of the keys) to position 1, all x with $M/3 < x \le M/2$ (i.e. 1/6 of the keys) to position 2 etc. So the table is filled asymmetrically. As the function $x \mapsto x \cdot p \mod M$ is a bijection from $\{0, \ldots, M-1\}$ to $\{0, \ldots, M-1\}$, h has the same property of an asymmetrical filled table (but compared to h' we do not have that a long sequence of subsequent keys are mapped to the same position which would be another undesirable property, cf. part (a)).
- (f) The calculation of a single hash value needs $\Omega(\log m)$).

Exercise 2: (No) Families of Universal Hash Functions (10 Points)

- (a) Let $S = \{0, ..., M-1\}$ and $\mathcal{H}_1 := \{h : x \mapsto a \cdot x^2 \mod m \mid a \in S\}$. Show that H_1 is not *c*-universal for constant $c \ge 1$ (that is *c* is fixed and must not depend on *m*). (4 Points)
- (b) Let *m* be a prime and let $k = \lfloor \log_m M \rfloor$. We consider the keys $x \in S$ in base *m* presentation, i.e., $x = \sum_{i=0}^{k} x_i m^i$. Consider the set of functions from the lecture (week 5, slide 15)

$$\mathcal{H}_2 := \left\{ h : x \mapsto \sum_{i=0}^{\mathbf{k}} a_i x_i \mod m \mid a_i \in \{0, \dots, m-1\} \right\}.$$

Show that \mathcal{H}_2 is 1-universal.

h

(6 Points)

Hint: Two keys $x \neq y$ have to differ at some digit $x_j \neq y_j$ in their base m presentation. Remark: Since m is prime, for each element $a \in \{1, ..., m-1\}$ there exists an inverse element $b \in \{1, ..., m-1\}$ of a modulo m i.e., $a \cdot b \equiv 1 \mod m$.

Sample Solution

(a) For an $x \in S$ let $y = x + i \cdot m \in S$ for some $i \in \mathbb{Z} \setminus \{0\}$. Such a y exists for any x if M > 2m. Let $h \in \mathcal{H}_1$. We obtain

$$\begin{aligned} (y) &= a \cdot y^2 \mod m \\ &\equiv a \cdot (x + im)^2 \mod m \\ &\equiv a \cdot (x^2 + 2xim + (im)^2) \mod m \\ &\equiv ax^2 \mod m = h(x). \end{aligned}$$
 (the vanishing terms are multiples of m)

It follows that $|\{h \in \mathcal{H}_1 \mid h(x) = h(y)\}| = |\mathcal{H}_1|$, so for m > c we have

$$|\{h \in \mathcal{H}_1 \mid h(x) = h(y)\}| > \frac{c}{m}|\mathcal{H}_1| .$$

This means that for m > c, \mathcal{H}_1 is not *c*-universal.

(b) Let $x, y \in S$ with $x \neq y$. Let $x_j \neq y_j$ be the position where x and y differ in their base m representation. Let $h \in \mathcal{H}_2$ such that h(x) = h(y). We have

$$h(x) = h(y)$$

$$\iff \sum_{i=0}^{k} a_i x_i \equiv \sum_{i=0}^{k} a_i y_i \mod m$$

$$\iff a_j \underbrace{(x_j - y_j)}_{\neq 0} \equiv \sum_{i \neq j} a_i (y_i - x_i) \mod m$$

$$\iff a_j \equiv (x_j - y_j)^{-1} \sum_{i \neq j} a_i (y_i - x_i) \mod m \qquad (x_j - y_j)^{-1} \text{ exists because } m \text{ is prime}$$

This means that for any values $a_0, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k$ there is a *unique* a_j such that the function h defined by a_0, \ldots, a_k is in $\{h \in \mathcal{H}_2 \mid h(x) = h(y)\}$. So we have m^k possibilities to choose a function from $\{h \in \mathcal{H}_2 \mid h(x) = h(y)\}$. It follows

$$\frac{|\{h \in \mathcal{H}_2 \mid h(x) = h(y)\}|}{|\mathcal{H}_2|} = \frac{m^k}{m^{k+1}} = \frac{1}{m} \; .$$