Algorithms and Datastructures Winter Term 2023
 Sample Solution Exercise Sheet 6

Due: Wednesday, December 13th, 2pm

Exercise 1: Red-Black Trees

(a) Decide for each of the following trees if it is a red-black tree and if not, which property is violated:

(b) On the following red-black tree, first execute the operation insert(8) and afterwards delete(5). Draw the resulting tree and document intermediate steps.

Sample Solution

(a) From left to right:

1) Red-black-tree
2) No red-black-tree, because it is no binary search tree (the root's right child has a smaller key).
3) No red-black-tree, because the number of black nodes on a path from the root to a leaf is larger if you go through the left subtree.
(b) We insert a red node with key 8 according to the rule of inserting into binary search trees.

We are in case 1 b from the lecture. We do a right-rotate $(9,8)$,

a left-rotate $(7,8)$

and recolor nodes 7 and 8 .

Now we execute delete(5). We are in case 2 b from the lecture (deleting a black node with two NIL-children). First we remove node 5 from the tree and color the right NIL-child of node 4 double black to correct the black height.

We are in case A. 2 from the lecture. We do a left-rotate $(1,3)$

and recolor nodes 1 and 3 .

Now we are in case A.1. We do a right-rotate (4,3)

and recolor. Finally, the tree looks like this.

Exercise 2: AVL-Trees ${ }^{1}$

An AVL-tree is a binary search tree with the additional property that for each node v, the depth of its left and its right subtree differ by at most 1 .
(a) Show via induction that an AVL-tree of depth d is filled completely up to depth $\left\lfloor\frac{d}{2}\right\rfloor$. (3 Points) A binary tree is filled completely up to depth d^{\prime} if it contains for all $x \leq d^{\prime}$ exactly 2^{x} nodes of depth x.

[^0](b) Give a recursion relation that describes the minimum number of nodes of an AVL-tree as a function of d.
(c) Show that an AVL-tree with n nodes has depth $\mathcal{O}(\log n)$.
(4 Points)
You can either use part (a) or part (b).

Sample Solution

(a) Induktion start: Each non-empty tree has a root and is hence completely filled up to depth 0 . Hence the statement is true for $d=0$ and $d=1$ (as $\lfloor d / 2\rfloor=0$ for $d=0$ and $d=1$).
Induktion step: Assume the statement holds for all AVL-trees up to depth d. We show that it also holds for AVL-trees of depth $d+1$.
Let T be an AVL-tree of depth $d+1$ with r as root and T_{ℓ} and T_{r} as left and right subtree. One of these subtrees must have depth d (lets say T_{ℓ}). As T is an AVL-tree, it follows that T_{r} has depth at least $d-1$. By the induction hypothesis, T_{ℓ} is completely filled up to depth $\lfloor d / 2\rfloor$ and T_{r} is completely filled up to depth $\left\lfloor\frac{d-1}{2}\right\rfloor$. So both subtrees are completely filled up to depth $\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{d+1}{2}-1\right\rfloor=\left\lfloor\frac{d+1}{2}\right\rfloor-1$ and hence T is filled completely up to depth $\left\lfloor\frac{d+1}{2}\right\rfloor$.
(b) Let n_{d} be the minimum number of nodes in an AVL-tree of depth d. As every tree of depth d has at least $d+1$ nodes (as it contains a path of length d), we obtain as base cases $n_{0}=1$ and $n_{1}=2$. Now let $d \geq 2$. An AVL-tree T of depth d consists of a root r, a left subtree T_{ℓ} and a right subtree T_{r}. One of them, lets say T_{ℓ}, has depth $d-1$ and hence at least n_{d-1} nodes. As T is an AVL-tree, it follows that T_{r} has depth at least $d-2$ and hence at least n_{d-2} nodes. Hence T has at least $n_{d}=n_{d-1}+n_{d-2}+1$ nodes.
(c) Using (a): And AVL-tree of depth d is filled completely up to depth $\left\lfloor\frac{d}{2}\right\rfloor$, so T has $n \geq 2^{\left\lfloor\frac{d}{2}\right\rfloor}$ nodes. We obtain

$$
\begin{aligned}
& 2^{\left\lfloor\frac{d}{2}\right\rfloor} \leq n \\
\Longleftrightarrow & \left\lfloor\frac{d}{2}\right\rfloor \leq \log (n) \\
\Longrightarrow & \frac{d}{2}-\frac{1}{2} \leq\left\lfloor\frac{d}{2}\right\rfloor \leq \log (n) \\
\Longrightarrow & d \leq 2 \log n+1 \\
\Longrightarrow & d \in \mathcal{O}(\log (n)) .
\end{aligned}
$$

Using (b): Similar to the Fibonacci-series we have $n_{d}=n_{d-1}+n_{d-2}+1=2 n_{d-2}+n_{d-3}+2 \geq$ $2 n_{d-2}$. This means that increasing the depth by 2 doubles the number of nodes, so the number of nodes grows exponentially in the depth, or the depth grows logarithmically in the number of nodes. More formally, we have $n_{d} \geq 2 n_{d-2} \geq 2^{2} n_{d-4} \geq \cdots \geq 2^{\lfloor d / 2\rfloor} n_{d-2\lfloor d / 2\rfloor} \geq 2^{\lfloor d / 2\rfloor} n_{0}=2^{\lfloor d / 2\rfloor}$. The rest follows as above.

[^0]: ${ }^{1}$ AVL-Trees are not part of the lecture. To solve this exercise the definition given below is sufficient.

