Algorithms and Datastructures Winter Term 2023 Sample Solution Exercise Sheet 11

Due: Wednesday, Jan 31st, 12 pm

Exercise 1: Bitstrings without consecutive ones

Given a positive integer n, we want to compute the number of n-digit bitstrings without consecutive ones (e.g., for $n=3$ this number is 5 , as $000,001,010,100,101$ are the 3 -digit bitstrings without consecutive ones).
(a) Give an algorithm which solves this problem in time $\mathcal{O}(n)$. Explain the runtime.
(b) Implement your solution. You may use the template DP.py. Run your algorithm on the values 10,20 und 50 and write your results in erfahrungen.txt.
(5 Points)

Sample Solution

(a) Let $A(n, i)$ be the number of n-digit bitstrings without consecutive ones ending on i, for $i \in\{0,1\}$. We have $A(n, 0)=A(n-1,0)+A(n-1,1)$ and $A(n, 1)=A(n-1,0)$. It follows $A(n, 0)=$ $A(n-1,0)+A(n-2,0)$ and for the base cases $A(1,0)=1$ and $A(2,0)=3$. The recursive structure is the same as for the Fibonacci numbers. The calculation therefore goes along similar lines as in the lecture (week 11, slide 6). The number of n-digit bitstrings without consecutive ones is $A(n+1,0)$.
(b) Cf. DP.py (another inplementation than described in (a)). The values for 10, 20 and 50 are 144, 17711 and 32951280099.

Exercise 2: Partitioning

Given a set $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ with $x_{i} \in \mathbb{N}$, we want to determine whether there is a subset $S \subseteq X$ such that $\sum_{x \in S} x=\sum_{x \in X \backslash S} x$ (it is not necessary to compute S).
(a) Let $W:=\sum_{x \in X} x$. Give a recursive formula $s:\{0, \ldots, n-1\} \times\{0, \ldots, W\} \rightarrow\{$ True, False $\}$ such that $s(i, j)=$ True if and only if there is a $S \subseteq\left\{x_{0}, \ldots, x_{i}\right\}$ such that $\sum_{x \in S} x=j$. Explain how s can be used to solve the above problem in time $\mathcal{O}(W \cdot n)$.
(5 Points)
(b) Implement your solution. You may use the template DP.py. Run your algorithm on the sets given in set1.txt, set2.txt and set3.txt and write your results to erfahrungen.txt (5 Points)

Sample Solution

(a) Assume there is a set $S \subseteq\left\{x_{0}, \ldots, x_{i}\right\}$ with $\sum_{x \in S} x=j$. Then we either have $x_{i} \in S$ or $x_{i} \notin S$. In the first case, there is a set $S^{\prime} \subseteq\left\{x_{0}, \ldots, x_{i-1}\right\}$ with $\sum_{x \in S^{\prime}} x=j-x_{i}$. In the second case there
is a set $S^{\prime \prime} \subseteq\left\{x_{0}, \ldots, x_{i-1}\right\}$ with $\sum_{x \in S^{\prime \prime}} x=j$. If such a set S does not exist, there is neither S^{\prime} nor $S^{\prime \prime}$. We therefore have that S exists if and only if S^{\prime} or $S^{\prime \prime}$ exist. We recursively define

$$
s(i, j)=s\left(i-1, j-x_{i}\right) \vee s(i-1, j)
$$

where \vee is the or-operator which is true if one of the arguments is true. We define the following base cases. We set $s(i, 0)=$ True since the empty set sums up to 0 . We set $s(0, j)=$ True if and only if $x_{0}=j$. We set $s(i, j)=$ False if $i<0$ or $j<0$.
If there is a set $S \subseteq X$ with $\sum_{x \in S} x=\sum_{x \in X \backslash S} x$, then both sums must equal $W / 2$. We therefore obtain a solution of the problem by computing $s(n-1, W / 2)$.
We apply dynamic programming to compute $s(n-1, W / 2)$. As i and j only decrease in the recursion, we only have $n \cdot(W / 2+1)=\mathcal{O}(n \cdot W)$ different possibilities for parameters (i, j). We therefore have to compute $\mathcal{O}(n \cdot W)$ the value of $s(i, j)$.
Computing a single value via $s(i, j)=s\left(i-1, j-x_{i}\right) \vee s(i-1, j)$ without the costs for the recursion takes $\mathcal{O}(1)$. We save all values $s(i, j)$ in a dictionary memo $[\mathrm{i}, \mathrm{j}]$ and therefore have to compute the value $s(i, j)$ only once. As runtime we obtain $\mathcal{O}(n \cdot W)$.
(b) Cf. DP.py. The results for the sets set1.txt, set2.txt and set3.txt are True, False, True.

