Algorithm Theory Exercise Sheet 11

Due: Friday, 19th of January 2023, 10:00 am

Exercise 1: Max Cut

Let $G=(V, E)$ be a simple undirected graph. Consider the following randomized algorithm: Every node $v \in V$ joins set S with probability $1 / 2$. You can assume that $(S, V \backslash S)$ actually forms a cut i.e., $\emptyset \neq S \neq V$.
(a) Show that with probability at least $1 / 3$ this algorithm outputs a cut which is a 4 -approximation to the maximum cut (i.e., the cut of maximum possible size)
(5 Points)
Hint: Apply the Markov inequality to the number of edges that do not cross the cut. For a non-negative random variable X, the Markov inequality states that for all $t>0$ we have

$$
P(X \geq t) \leq \frac{E[X]}{t}
$$

(b) How can you use the above's algorithm to devise a 4-approximation with probability at least $1-\left(\frac{2}{3}\right)^{k}$ for any integer $k>0$?
(4 Points)
(c) How would you choose k from the previous subtask to make sure your algorithm computes a 4-approximation with high probability ${ }^{1}$?
(1 Point)

Exercise 2: Balls into Bins

Assume we have n bins and n balls (for $n \geq 2$). We now throw all the balls uniformly at random into the bins. In the following we want to show that the maximum number of balls per bin is at most $O(\log n)$ with high probability. For that we define the maximum load L by $\max _{1 \leq j \leq n} Y_{j}$ where (random variable) Y_{j} stands for the number of balls in bin j.
(a) For a given bin j, what is the expected number of balls in j ? (i.e., compute $E\left[Y_{j}\right]$)
(2 Points)
(b) Use a Chernoff Bound to show that $P\left(Y_{j} \geq 2 e \cdot \log _{2} n\right) \leq 1 / n^{2 e}$.
(6 Points)
Chernoff Bound: Suppose $X_{1}, X_{2}, \ldots, X_{N}$ are independent random variables taking values in $\{0,1\}$. Let X denote $\sum_{i=1}^{N} X_{i}$ and let $\mu=E[X]$ be this sums expected value. Then for any $\delta>0$,

$$
P(X \geq(1+\delta) \cdot \mu) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

(c) Show that the maximum load L is small, i.e., show that $P\left(L<2 e \cdot \log _{2} n\right)>1-\frac{1}{n^{4}}$. Use a Union Bound!
(2 Points)

[^0]
[^0]: ${ }^{1}$ We use the term with high probability in the context of graphs with n nodes and for any given constant $c>0$ if the algorithms succeeds with probability at least $1-\frac{1}{n^{c}}$.

