Algorithm Theory
 Exercise Sheet 12

Due: Friday, 26th of January 2024, 10:00 am

Exercise 1: Modified Contraction

(a) Let's modify the contraction algorithm from the lecture in the following way: Instead of contracting a uniform random edge, we choose a uniform random pair of remaining nodes in each step and merge them. That is, as long as there are more than two nodes remaining, we choose two nodes $u \neq v$ uniformly at random and replace them by a new node w. For all edges $\{u, x\}$ and $\{v, x\}$ we add an edge $\{w, x\}$ and remove self-loops created at w.

1. Give an example graph of size at least n where the above algorithm does not work well, that is, where the probability of finding a minimum cut is exponentially small in n (show that in the second part).
(2 Points)
2. Show that for your example the modified contraction algorithm has probability of finding a minimum cut at most a^{n} for some constant $a<1$.
(4 Points)
(b) The edge contraction algorithm has a success probability $\geq 1 /\binom{n}{2}$. We used properties of this algorithm to show that there are at most $\binom{n}{2}$ minimum cuts in any graph. The improved (recursive) min-cut algorithm has a success probability $\geq 1 / \log n$. Why can't we use the same argumentation to show that there are at most $\log n$ minimum cuts in any graph (which clearly isn't true as we have seen that cycles have $\binom{n}{2}$ minimum cuts).

Exercise 2: Dominating Set in Regular Graphs

Let $G=(V, E)$ be an undirected graph. A set $D \subseteq V$ is called a dominating set if each node in V is either contained in D or adjacent to a node in D.
We consider the following randomized algorithm for d-regular graphs (i.e., graphs in which each node has exactly d neighbors).

```
Algorithm 1 domset(G)
    D=\emptyset
    Each node joins D independently with probability p:= min{1, c\cdot\operatorname{ln}n}d+1 } for some constant c\geq
    Each node that is neither in D nor has a neighbor in D joins D
    return D
```

For simplicity, in all tasks you may assume that $\frac{c \cdot \ln n}{d+1} \leq 1$, i.e., that $p=\frac{c \cdot \ln n}{d+1}$.
(a) Show that the expected size of D (after the execution of domset) is at most $\frac{c n \ln n}{d+1}+1$. (3 Points) Hint: Use the inequality $(1-x) \leq e^{-x}$.
(b) Show that after line 2 of domset, D has size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1-\frac{1}{n}$. (2 Points)

Hint: You might want to use Chernoff's Bound: If X_{1}, \ldots, X_{n} is a sequence of independent 0-1 random variables, $X=\sum X_{i}$ and $\mu=E[X]$, then for any $\delta>0$ we have

$$
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\min \left\{\delta, \delta^{2}\right\}}{3} \mu}
$$

(c) Show that for $c \geq 2$, with probability at least $1-\frac{1}{n}$, no node joins D in line 3 of domset. (3 Points)
(d) Conclude that for $c \geq 2$, domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1-\frac{2}{n}$.

