

(10 Points)

Algorithm Theory Exercise Sheet 12

Due: Friday, 26th of January 2024, 10:00 am

Exercise 1: Modified Contraction

- (a) Let's modify the contraction algorithm from the lecture in the following way: Instead of contracting a uniform random edge, we choose a uniform random pair of remaining nodes in each step and merge them. That is, as long as there are more than two nodes remaining, we choose two nodes $u \neq v$ uniformly at random and replace them by a new node w. For all edges $\{u, x\}$ and $\{v, x\}$ we add an edge $\{w, x\}$ and remove self-loops created at w.
 - 1. Give an example graph of size at least n where the above algorithm does not work well, that is, where the probability of finding a minimum cut is exponentially small in n (show that in the second part). (2 Points)
 - 2. Show that for your example the modified contraction algorithm has probability of finding a minimum cut at most a^n for some constant a < 1. (4 Points)
- (b) The edge contraction algorithm has a success probability $\geq 1/\binom{n}{2}$. We used properties of this algorithm to show that there are at most $\binom{n}{2}$ minimum cuts in any graph. The improved (recursive) min-cut algorithm has a success probability $\geq 1/\log n$. Why can't we use the same argumentation to show that there are at most $\log n$ minimum cuts in any graph (which clearly isn't true as we have seen that cycles have $\binom{n}{2}$ minimum cuts). (4 Points)

Exercise 2: Dominating Set in Regular Graphs (10 Points)

Let G = (V, E) be an undirected graph. A set $D \subseteq V$ is called a *dominating set* if each node in V is either contained in D or adjacent to a node in D.

We consider the following randomized algorithm for d-regular graphs (i.e., graphs in which each node has exactly d neighbors).

Algorithm	1	domset((G)
-----------	---	---------	-----

- 1: $D = \emptyset$
- 2: Each node joins D independently with probability $p := \min\{1, \frac{c \cdot \ln n}{d+1}\}$ for some constant $c \ge 1$
- 3: Each node that is neither in D nor has a neighbor in D joins D
- 4: return D

For simplicity, in all tasks you may assume that $\frac{c \cdot \ln n}{d+1} \leq 1$, i.e., that $p = \frac{c \cdot \ln n}{d+1}$.

- (a) Show that the expected size of D (after the execution of domset) is at most $\frac{cn \ln n}{d+1} + 1$. (3 Points) Hint: Use the inequality $(1-x) \le e^{-x}$.
- (b) Show that after line 2 of domset, D has size $O\left(\frac{n\ln n}{d+1}\right)$ with probability at least $1-\frac{1}{n}$. (2 Points)

Hint: You might want to use Chernoff's Bound: If X_1, \ldots, X_n is a sequence of independent 0-1 random variables, $X = \sum X_i$ and $\mu = E[X]$, then for any $\delta > 0$ we have

$$\Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\min\{\delta,\delta^2\}}{3}\mu} .$$

- (c) Show that for $c \ge 2$, with probability at least $1 \frac{1}{n}$, no node joins D in line 3 of domset. (3 Points)
- (d) Conclude that for $c \ge 2$, domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1 \frac{2}{n}$. (2 Points)