

Algorithm Theory Exercise Sheet 13

Due: Friday, 2nd of February 2024, 10:00 am

Exercise 1: Miscellaneous Approximations

(8 Points)

Let G = (V, E) be an undirected connected graph .

- (a) The minimum dominating set problem asks to find a dominating set $D \subseteq V$ of minimum size. Show that for $c \geq 2$, the **domset** algorithm from the previous sheet (c.f. sheet 12, exercise 2) computes an $\mathcal{O}(\ln n)$ -approximation of a minimum dominating set with probability at least $1 - \frac{2}{n}$. (3 Points)
- (b) 1. An *independent set* is a set $I \subseteq V$ such that no two nodes in I share an edge in E. The maximum independent set problem asks to find an independent set of maximum size. Recall that the minimum vertex cover problem asks to find a vertex cover of minimum size. Now, show that both optimization problems are equivalent i.e. finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set . (1 Point)
 - 2. Show that the two problems are not equivalent in an approximation-preserving way, i.e it is not true that for all positive integer α , finding an α -approximate minimum vertex cover is equivalent to finding a $1/\alpha$ -approximate maximum independent set.

Hint: Give a counterexample by finding a family of graphs where one can easily obtain a 2-approximate minimum vertex cover, but this will equivalently find a very bad approximate maximum independent set. (4 Points)

Exercise 2: A Set Cover Variant

(12 Points)

We consider the following variant of the set cover problem discussed in the lecture. We are given a set of elements X and a collection $S \subseteq 2^X$ of subsets of X such that $\bigcup_{S \in S} S = X$. In addition, we are given an integer parameter $k \ge 2$.

Instead of finding a collection $C \subseteq S$ of the sets which covers all elements, the goal is to find a set of **at most** k sets $S_1, \ldots, S_k \in S$ such that the number of covered elements $|S_1 \cup \cdots \cup S_k|$ is maximized. We consider the greedy set cover algorithm from the lecture, but we stop the algorithm after adding k sets.

- (a) Show that for k = 2, the described greedy algorithm has approximation ratio at most 4/3. (5 Points)
- (b) Let us now consider a general parameter $k \ge 2$. Show that if an optimal choice of k sets S_1, \ldots, S_k covers ℓ elements, after adding t sets, the greedy algorithm covers at least $\frac{\ell}{k} \cdot \sum_{i=1}^{t} \left(1 \frac{1}{k}\right)^{i-1}$ elements. (5 Points)
- (c) Prove that the approximation ratio of the greedy algorithm is at most $\frac{e}{e-1}$. You can use that $(1-1/k)^k < e^{-1}$. (2 Points)