Algorithm Theory
 Exercise Sheet 13

Due: Friday, 2nd of February 2024, 10:00 am

Exercise 1: Miscellaneous Approximations

(8 Points)

Let $G=(V, E)$ be an undirected connected graph .
(a) The minimum dominating set problem asks to find a dominating set $D \subseteq V$ of minimum size. Show that for $c \geq 2$, the domset algorithm from the previous sheet (c.f. sheet 12 , exercise 2) computes an $\mathcal{O}(\ln n)$-approximation of a minimum dominating set with probability at least $1-\frac{2}{n}$. (3 Points)
(b) 1. An independent set is a set $I \subseteq V$ such that no two nodes in I share an edge in E. The maximum independent set problem asks to find an independent set of maximum size. Recall that the minimum vertex cover problem asks to find a vertex cover of minimum size. Now, show that both optimization problems are equivalent i.e. finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set .
(1 Point)
2. Show that the two problems are not equivalent in an approximation-preserving way, i.e it is not true that for all positive integer α, finding an α-approximate minimum vertex cover is equivalent to finding a $1 / \alpha$-approximate maximum independent set.
Hint: Give a counterexample by finding a family of graphs where one can easily obtain a 2-approximate minimum vertex cover, but this will equivalently find a very bad approximate maximum independent set.
(4 Points)

Exercise 2: A Set Cover Variant

We consider the following variant of the set cover problem discussed in the lecture. We are given a set of elements X and a collection $\mathcal{S} \subseteq 2^{X}$ of subsets of X such that $\bigcup_{S \in \mathcal{S}} S=X$. In addition, we are given an integer parameter $k \geq 2$.

Instead of finding a collection $\mathcal{C} \subseteq \mathcal{S}$ of the sets which covers all elements, the goal is to find a set of at most k sets $S_{1}, \ldots, S_{k} \in \mathcal{S}$ such that the number of covered elements $\left|S_{1} \cup \cdots \cup S_{k}\right|$ is maximized. We consider the greedy set cover algorithm from the lecture, but we stop the algorithm after adding k sets.
(a) Show that for $k=2$, the described greedy algorithm has approximation ratio at most $4 / 3$. (5 Points)
(b) Let us now consider a general parameter $k \geq 2$. Show that if an optimal choice of k sets S_{1}, \ldots, S_{k} covers ℓ elements, after adding t sets, the greedy algorithm covers at least $\frac{\ell}{k} \cdot \sum_{i=1}^{t}\left(1-\frac{1}{k}\right)^{i-1}$ elements.
(5 Points)
(c) Prove that the approximation ratio of the greedy algorithm is at most $\frac{e}{e-1}$. You can use that $(1-1 / k)^{k}<e^{-1}$.
(2 Points)

