
Theoretical Computer Science
Bridging Course

Introduction / General Info
−

Winter Term 2023/24
Fabian Kuhn



TCS Bridging Course Fabian Kuhn 2

About the Course
Topics
• Foundations of theoretical computer science
• Introduction to logic

No lectures
• There are recordings which you are supposed to watch

Exercises
• There will be weekly exercises which you should do

– Doing the exercises is not mandatory, but highly recommended

Exam
• A oral exam at the end of the term

– Details will be published on the course web page a.s.a.p.



TCS Bridging Course Fabian Kuhn 3

About the course
What is the purpose of the course?
Who is it targeted to?

• The course is for incoming M.Sc. students who do not have the 
necessary theory background required by the M.Sc. program.
– E.g., students who did not study computer science or

students from more applied schools, ... 



TCS Bridging Course Fabian Kuhn 4

Website
• All necessary information about the course will be published on

http://ac.informatik.uni-freiburg.de/teaching/ws23_24/tcs-bridging.php

– Or go to my group’s website: http://ac.informatik.uni-freiburg.de
– Then follow teaching – winter term 2023/24 – TCS bridging course

• Please check the website for
– Recordings and slides
– Exercises and sample solutions
– Pointers to additional literature

(e.g., written lecture notes from an older version of this lecture)
– Information about the exam
– …

http://ac.informatik.uni-freiburg.de/teaching/ws23_24/tcs-bridging.php
http://ac.informatik.uni-freiburg.de/


TCS Bridging Course Fabian Kuhn 5

Exercises
There will be weekly exercise sheets:
• Exercise sheets are published at the latest on Monday on the 

website
• Exercises are due after one week on the Monday at 12:15 before 

the exercise tutorial
– If you want corrections / comments from your tutor

• Hand in your exercises on paper (in tutorial) or by email

• If you work in a group, the group needs to hand in one solution
– Make sure that all students participate in solving & writing equally!

• After getting back your exercises, you can meet and discuss the 
exercises with your tutor
– On Mondays or if additional help is necessary on request



TCS Bridging Course Fabian Kuhn 6

Exercise Tutorials
Assistants for the course:
• Zahra Parsaeian, zahrap@cs.uni-freiburg.de

Weekly Tutorials:
• There is a weekly tutorial on Monday from 12:15 – 14:00

– The tutorials will be in-person (physical) in room 106-04-007

• In the tutorial, we discuss the upcoming exercise sheet and 
your solutions of the last exercise sheet
– You are encouraged to actively participate in the tutorials and ask 

questions.

• Also ask the course assistant if you have any questions! 

mailto:zahrap@cs.uni-freiburg.de


TCS Bridging Course Fabian Kuhn 7

Exercises
The exercises are the most important part of the course!

• To pass the exam, it is important that you do the exercises
• If you feel comfortable with all the exercises, you should also be 

able to pass the exam

• When working in groups, make sure that you all participate in 
solving the questions and in writing the solutions!
– You should all be able to explain your solutions to your tutor.



TCS Bridging Course Fabian Kuhn 8

Course Topics
Foundations of Theoretical Computer Science
• Automata theory
• Formal languages, grammars
• Turing machines
• Decidability
• Computational complexity

Introduction to Logic
• Propositional logic
• First order logic



TCS Bridging Course Fabian Kuhn 9

Purpose of the Course
Goal: Understand the fundamental capabilities and limitations of 
computers

• What does it mean to “compute”?
– Automata theory

• What can be computed?
– Theory on computability/decidability

• What can be computed efficiently?
– Computational complexity



TCS Bridging Course Fabian Kuhn 10

Meaning of “Computing”
Mathematical Models

• Turing machines 1930s
• Finite state automata 1940s
• Formal grammars 1950s

Practical Aspects

• Compute architectures 1970s
• Programming languages 1970s
• Compilers 1970s



TCS Bridging Course Fabian Kuhn 11

Is My Function Computable?

Write an algorithm / computer program to compute it
• Can it compute the right answer for every instance?

• Does it always give an answer (in finite time)?

• Then you are done.

Otherwise, there are two options
• There is an algorithm, but you don’t know it

• There is no algorithm à the problem is unsolvable

Formally proving computability is sometimes hard!
• But you will learn how to approach this…



TCS Bridging Course Fabian Kuhn 12

Is My Function Computable?
• Many “known” problems are solvable

– Sorting, searching, knapsack, TSP, …

• Some problems are not solvable
– Halting problem
– Gödel incompleteness theorem

• Don’t try to solve unsolvable problems!



TCS Bridging Course Fabian Kuhn 13

Can I Compute My Function Efficiently?

• Some problems are “easy”

– Can we formally define what this means?

• Complexity theory is about this

– Complexity classes, tools for checking membership

• It is important to know how hard a problem is!

• Feasible problems:
– E.g., sorting, linear programming, LZW compression, primality testing, …

– Time to solve is polynomial in the size of the input

• Problems that are considered infeasible
– Some scheduling problems, knapsack, TSP, graph coloring, …

– Important open question: “Is P = NP”?

• Unfeasible problems
– Time exponential in input, e.g., quantified Boolean formula



TCS Bridging Course Fabian Kuhn 14

Questions?


