University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

UNI
FREIBURG

Algorithms and Data Structures Exam

27. August 2020, 10:00 -13:00

NI
Matriculation NoO.: oo

SIZNATUIE: e

Do not open or turn until told so by the supervisor!

e Put your student ID in front of you or on the table next to you.
e Write your name and matriculation number on this page and sign the document.

e Your signature confirms that you have answered all exam questions yourself without any help,
and that you have notified exam supervision of any interference.

e This is an open book exam therefore printed or hand-written material is allowed.

e No electronic devices are allowed.

e Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
e You may write your answers in English or German language.

e Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise
the one yielding the minimal number of points is considered.

e Detailed steps might help you to get more points in case your final result is incorrect.

e The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain
your answer carefully and in sufficient detail.

e The keywords Give..., State... or Describe... indicate that you need to provide an answer solving
the task at hand but without proof or deep explanation (except when stated otherwise).

e You may use information given in a Hint without further explanation.
e Read each task thoroughly and make sure you understand what is expected from you.

e Raise your hand if you have a question regarding the formulation of a task or if you need addi-
tional sheets of paper.

e There is a separate solution page for each exercise.
e Write your name on all sheets!

Task 1 2 3 4 5 6 7 8 Total
Maximum 18 19 17 10 17 12 15 12 120

Points

Task 1: Short Questionns (18 Points)

(a) Perform the operation delete (5) on the following red-black tree. Draw the resulting
tree. You may write the colors next to the nodes. (4 Points)

5
RN

3 8
(o
NIL NIL

(b) Consider the following directed, weighted graph GG. Run the Bellman-Ford algorithm on
G starting from node A. Specify the computed distances of all nodes after each iteration
of the outer loop. (4 Points)

(c) Draw an undirected, weighted graph G = (V, F, w) and mark a starting node s € V' such
that every “Shortest Path Tree” rooted at s in GG differs from any minimum spanning tree
of G. (4 Points)

(d) Given an undirected, unweighted (not necessarily connected) graph G = (V,), we want
to check if this graph is almost a spanning tree. By this, we mean that G consists of
a spanning tree and at most ¢ additional edges, where ¢ € O(1) is a given constant.
Describe an algorithm that performs this check in O(|V'|) time and justify the runtime. (6
Points)

Solution Task 1

Task 2: Sorting Algorithms (19 Points)

Given are k sorted arrays Aq, ..., A with a total of n elements. We want to merge these arrays
into a single sorted array A of length n.

(a) One possible solution is the following algorithm:

Algorithm 1 sequential_merge(Ay,..., Ax)

A == A1
for: =2tokdo
A =merge(A, A;)

return A

where merge () is the merge operation as in the merge-sort algorithm.

Assume £ is a divisor of n and all arrays have length 7. State the runtime of sequential_merge
as a function of n and k£, and justify your answer. (7 Points)

(b) A student instead suggests writing all elements into an array of length n in any order, and
then sorting this array using the merge-sort algorithm from the lecture. Is this approach
faster or slower than sequential_merge? Justify your answer. (3 Points)

Hint: As in part (a), assume all arrays have length .
(c) We now wish to solve the given problem in O(n log k) time for arbitrary values k£ < n, us-

ing binary heaps. Complete the following algorithm heap_merge (write the pseudocode
that should replace the 2?2 ?). Justify the runtime.

Algorithm 2 heap_merge(Ay, ..., Ax)

H = create_binary_heap() I> creates an empty binary heap
fori =1to kdo

key = A;[0]

H.insert((i,0), key)
A = Array of length n > allocate an array of length n
forj =0ton—1do

77
return A

Hint: H manages data in the form (4, £), where / is a position in the array A;. (9 Points)

Solution Task 2

Task 3: Big O-Notation (17 Points)

State whether the following statements are true or false. Prove or disprove each statement using
the set definition of Landau notation (i.e., particularly without using limits).

(@) n? —3n € Q(n?) (4 Points)
(b) (logn)? € O(log(n?)) (4 Points)
() n*eO0 (> 1) (4 Points)

(d) If f(n) € o(g(n)) and h(n) is monotonically increasing, then h(f(n)) € O(h(g(n))) (5
Points)

Solution Task 3

Task 4: Hashing with Open Addressing (10 Points)

We consider hash tables with open addressing and two methods for resolving collisions: double
hashing and cuckoo hashing. Let m be the size of the hash table. We define

hi(z) ;== (5-x) mod m,
hao(x) := 1+ (2 mod (m — 1)),
hs(z) == (3-x —2) mod m.

(a) Let hy(z,i) := (hi(x) + i - he(z)) mod m. Insert the keys 13, 14, 2, 3, 11 sequentially
into a hash table of size m := 11. Use hy and double hashing for collision resolution. (5
Points)

(b) Insert the values 3, 10, 7 sequentially into a hash table of size m := 7. Use cuckoo hashing
with the functions h; and hs for collision resolution. Provide the intermediate state of the
table after each insertion (i.e., three tables in total). (5 Points)

Note: Write your solutions in the tables on the solution sheet provided for this question.

Solution Task 4

Task (a):

Hashtable after inserting all elements:

0 1 2 3 4 5 6 7

10

Task (b):

After inserting 3:

0 1 2 3 4 5 6

After innserting 10:

0 1 2 3 4 5 6

After inserting 7:

0 1 2 3 4 5 6

Task 5: Graphs (17 Points)

Given a directed, unweighted graph G = (V, E), we define G* = (V, E?) such that (u,v) € E?
if and only if u # v and there exists a directed path of length at most 2 from u to v in G.

(a) Describe an algorithm with runtime O(|E| - |V]) that computes the adjacency list repre-
sentation of G* from the adjacency list representation of G. That is, v should be in the
adjacency list of u if there is a path from u to v of length at most 2. Here, we allow v to
appear multiple times in the list if there are multiple paths. Justify the runtime. (6 Points)

(b) Describe an algorithm with runtime O(|E| - |V|) that computes the adjacency list repre-
sentation of G2 without duplicate nodes in any adjacency list. Justify the runtime.
Hint: If you use a hash table, assume that inserting and checking values takes O(1) time.
(4 Points)

(c) Describe how to compute the adjacency matrix of G? from the adjacency matrix of G in
O(|V']?) time. Explain the runtime. (7 Points)

10

Solution Task 5

11

Task 6: Mystery function (12 Points)

Consider the following algorithm in abstract pseudocode. It takes a weighted, undirected, con-
nected graph G = (V, E, w) as input.

Algorithm 3 myst-edge-set(V, E,w)

for jedes e € F nach absteigendem Gewicht w(e) do > beachte Iterationsreihenfolge!
entferne e aus £/
if (V,) ist nicht zusammenhingend then
fiige e zu E hinzu

return £

(a) Run the algorithm myst_edge_set (V, E, w) on the graph below. Number each
edge in the graph in the order that it is deleted by the algorithm (as a number next to the
respective edge). Also mark all edges that are returned by the algorithm (by outlining or
bolding them). (5 Points)

(b) What does myst_edge_set (V, E, w) return? Prove your answer. (7 Points)

12

Solution Task 6

13

Task 7: Separate Words (15 Points)

Given a dictionary D that contains words of maximum length & € O(1). Let T be a string of
length n. We want to determine if 7" can be segmented into contiguous substrings, each of which
isaword in D.

Example: Let D = {‘airplane’, ‘algorithms’, ‘train’, ‘awesome’, ‘are’}. Then, for the inputs
Ty = ‘algorithmsarestupid’ or 7, = ‘airplanebus’, the answer to the problem is False. For
T3 = ‘algorithmsareawesome’, the answer is True.

Hints:
e Assume £ is provided as part of the input, and that you can check if a substring of length
< kisin D in O(1) time (e.g., using hashing).

e Also assume that the characters of 7" are stored in an array 7'[0..n — 1].

(a) Lett:{0,...,n — 1} — {True, False} be a function such that ¢(i) = True if and only if
the substring 7'[0..7] can be segmented into contiguous substrings, each of which is in D.

Derive a recursive relation for ¢(7). That is, specify how #(i) can be computed using t(7)
with j < 1. Justify your answer. (8 Points)

(b) Provide an algorithm that solves the above problem in O(n) time using dynamic program-
ming. Justify the runtime. (7 Points)

14

Solution Task 7

15

Task 8: StringMatching (12 Points)
Given the pattern P = BACBAB and the text T = CBACABBACBABACBABA.

(a) Provide the failure function (array S) of the Knuth-Morris-Pratt algorithm. (4 Points)

(b) Use the Knuth-Morris-Pratt algorithm to find all occurrences of P in 7. Show the steps
of the algorithm clearly. You may use the table provided on the solution sheet for this
purpose. (8 Points)

16

Solution Task 8

C

A

C

A

17

