
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

Algorithms and Data Structures Exam
27. August 2020, 10:00 -13:00

Name: .

Matriculation No.: .

Signature: .

Do not open or turn until told so by the supervisor!

• Put your student ID in front of you or on the table next to you.
• Write your name and matriculation number on this page and sign the document.
• Your signature confirms that you have answered all exam questions yourself without any help,

and that you have notified exam supervision of any interference.
• This is an open book exam therefore printed or hand-written material is allowed.
• No electronic devices are allowed.
• Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
• You may write your answers in English or German language.
• Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise

the one yielding the minimal number of points is considered.
• Detailed steps might help you to get more points in case your final result is incorrect.
• The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain

your answer carefully and in sufficient detail.
• The keywords Give..., State... or Describe... indicate that you need to provide an answer solving

the task at hand but without proof or deep explanation (except when stated otherwise).
• You may use information given in a Hint without further explanation.
• Read each task thoroughly and make sure you understand what is expected from you.
• Raise your hand if you have a question regarding the formulation of a task or if you need addi-

tional sheets of paper.
• There is a separate solution page for each exercise.
• Write your name on all sheets!

Task 1 2 3 4 5 6 7 8 Total

Maximum 18 19 17 10 17 12 15 12 120

Points

Task 1: Short Questionns (18 Points)

(a) Perform the operation delete(5) on the following red-black tree. Draw the resulting
tree. You may write the colors next to the nodes. (4 Points)

5

3

1

NIL NIL

NIL

8

NIL 9

NIL NIL

(b) Consider the following directed, weighted graph G. Run the Bellman-Ford algorithm on
G starting from node A. Specify the computed distances of all nodes after each iteration
of the outer loop. (4 Points)

A B C

E

D
1

5

2 1

-3

(c) Draw an undirected, weighted graph G = (V,E,w) and mark a starting node s ∈ V such
that every “Shortest Path Tree” rooted at s in G differs from any minimum spanning tree
of G. (4 Points)

(d) Given an undirected, unweighted (not necessarily connected) graph G = (V,E), we want
to check if this graph is almost a spanning tree. By this, we mean that G consists of
a spanning tree and at most c additional edges, where c ∈ O(1) is a given constant.
Describe an algorithm that performs this check in O(|V |) time and justify the runtime. (6
Points)

2

Solution Task 1

3

Task 2: Sorting Algorithms (19 Points)

Given are k sorted arrays A1, . . . , Ak with a total of n elements. We want to merge these arrays
into a single sorted array A of length n.

(a) One possible solution is the following algorithm:

Algorithm 1 sequential_merge(A1, . . . , Ak)

A = A1

for i = 2 to k do
A = merge(A,Ai)

return A

where merge() is the merge operation as in the merge-sort algorithm.

Assume k is a divisor of n and all arrays have length n
k

. State the runtime of sequential_merge
as a function of n and k, and justify your answer. (7 Points)

(b) A student instead suggests writing all elements into an array of length n in any order, and
then sorting this array using the merge-sort algorithm from the lecture. Is this approach
faster or slower than sequential_merge? Justify your answer. (3 Points)

Hint: As in part (a), assume all arrays have length n
k

.

(c) We now wish to solve the given problem in O(n log k) time for arbitrary values k ≤ n, us-
ing binary heaps. Complete the following algorithm heap_merge (write the pseudocode
that should replace the ???). Justify the runtime.

Algorithm 2 heap_merge(A1, . . . , Ak)

H = create_binary_heap() . creates an empty binary heap
for i = 1 to k do

key = Ai[0]
H.insert((i, 0), key)

A = Array of length n . allocate an array of length n
for j = 0 to n− 1 do

???
return A

Hint: H manages data in the form (i, `), where ` is a position in the array Ai. (9 Points)

4

Solution Task 2

5

Task 3: Big O-Notation (17 Points)

State whether the following statements are true or false. Prove or disprove each statement using
the set definition of Landau notation (i.e., particularly without using limits).

(a) n2 − 3n ∈ Ω(n2) (4 Points)

(b) (log n)2 ∈ O(log(n3)) (4 Points)

(c) n2 ∈ O (
∑n

i=1 i) (4 Points)

(d) If f(n) ∈ o(g(n)) and h(n) is monotonically increasing, then h(f(n)) ∈ O(h(g(n))) (5
Points)

6

Solution Task 3

7

Task 4: Hashing with Open Addressing (10 Points)

We consider hash tables with open addressing and two methods for resolving collisions: double
hashing and cuckoo hashing. Let m be the size of the hash table. We define

h1(x) := (5 · x) mod m,

h2(x) := 1 + (2x mod (m− 1)),

h3(x) := (3 · x− 2) mod m.

(a) Let hd(x, i) := (h1(x) + i · h2(x)) mod m. Insert the keys 13, 14, 2, 3, 11 sequentially
into a hash table of size m := 11. Use hd and double hashing for collision resolution. (5
Points)

(b) Insert the values 3, 10, 7 sequentially into a hash table of size m := 7. Use cuckoo hashing
with the functions h1 and h3 for collision resolution. Provide the intermediate state of the
table after each insertion (i.e., three tables in total). (5 Points)

Note: Write your solutions in the tables on the solution sheet provided for this question.

8

Solution Task 4

Task (a):

Hashtable after inserting all elements:

0 1 2 3 4 5 6 7 8 9 10

Task (b):

After inserting 3:

0 1 2 3 4 5 6

After innserting 10:

0 1 2 3 4 5 6

After inserting 7:

0 1 2 3 4 5 6

9

Task 5: Graphs (17 Points)

Given a directed, unweighted graph G = (V,E), we define G2 = (V,E2) such that (u, v) ∈ E2

if and only if u 6= v and there exists a directed path of length at most 2 from u to v in G.

(a) Describe an algorithm with runtime O(|E| · |V |) that computes the adjacency list repre-
sentation of G2 from the adjacency list representation of G. That is, v should be in the
adjacency list of u if there is a path from u to v of length at most 2. Here, we allow v to
appear multiple times in the list if there are multiple paths. Justify the runtime. (6 Points)

(b) Describe an algorithm with runtime O(|E| · |V |) that computes the adjacency list repre-
sentation of G2 without duplicate nodes in any adjacency list. Justify the runtime.

Hint: If you use a hash table, assume that inserting and checking values takes O(1) time.
(4 Points)

(c) Describe how to compute the adjacency matrix of G2 from the adjacency matrix of G in
O(|V |3) time. Explain the runtime. (7 Points)

10

Solution Task 5

11

Task 6: Mystery function (12 Points)

Consider the following algorithm in abstract pseudocode. It takes a weighted, undirected, con-
nected graph G = (V,E,w) as input.

Algorithm 3 myst-edge-set(V,E,w)

for jedes e ∈ E nach absteigendem Gewicht w(e) do . beachte Iterationsreihenfolge!
entferne e aus E
if (V,E) ist nicht zusammenhängend then

füge e zu E hinzu
return E

(a) Run the algorithm myst_edge_set(V, E, w) on the graph below. Number each
edge in the graph in the order that it is deleted by the algorithm (as a number next to the
respective edge). Also mark all edges that are returned by the algorithm (by outlining or
bolding them). (5 Points)

(b) What does myst_edge_set(V, E, w) return? Prove your answer. (7 Points)

A B C

D E F G

5

9

3

7 2
11

1

8 6

4

10

12

Solution Task 6

13

Task 7: Separate Words (15 Points)

Given a dictionary D that contains words of maximum length k ∈ O(1). Let T be a string of
length n. We want to determine if T can be segmented into contiguous substrings, each of which
is a word in D.

Example: Let D = {‘airplane’, ‘algorithms’, ‘train’, ‘awesome’, ‘are’}. Then, for the inputs
T1 = ‘algorithmsarestupid’ or T2 = ‘airplanebus’, the answer to the problem is False. For
T3 = ‘algorithmsareawesome’, the answer is True.

Hints:

• Assume k is provided as part of the input, and that you can check if a substring of length
≤ k is in D in O(1) time (e.g., using hashing).

• Also assume that the characters of T are stored in an array T [0..n− 1].

(a) Let t : {0, . . . , n − 1} → {True,False} be a function such that t(i) = True if and only if
the substring T [0..i] can be segmented into contiguous substrings, each of which is in D.

Derive a recursive relation for t(i). That is, specify how t(i) can be computed using t(j)
with j < i. Justify your answer. (8 Points)

(b) Provide an algorithm that solves the above problem in O(n) time using dynamic program-
ming. Justify the runtime. (7 Points)

14

Solution Task 7

15

Task 8: StringMatching (12 Points)

Given the pattern P = BACBAB and the text T = CBACABBACBABACBABA.

(a) Provide the failure function (array S) of the Knuth-Morris-Pratt algorithm. (4 Points)

(b) Use the Knuth-Morris-Pratt algorithm to find all occurrences of P in T . Show the steps
of the algorithm clearly. You may use the table provided on the solution sheet for this
purpose. (8 Points)

16

Solution Task 8

C B A C A B B A C B A B A C B A B A

17

