
University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn M. Fuchs, G. Schmid



Due: Wednesday, November 27th, 2pm

## Exercise 1: Hashing with Open Addressing (5 Points)

Let  $\mathcal{H}$  be a hash table of size m = 13 and let  $h_1, h_2, h_3 : \mathbb{N}_0 \mapsto \{0, ..., m-1\}$  be hash functions defined as follows<sup>1</sup>:

- $h_1(k) := \overline{k} \mod m$
- $h_2(k) := 3 \cdot k \mod m$
- $h_3(k) := k+1 \mod m$

Add the keys 23, 12, 75, 945, 30, 99, 345 (in that order) into the initially empty hash table  $\mathcal{H}$ . Solve conflicts as follows:

- a) Linear Probing using hash function  $h_1$ . (2 Points)
- b) Use Double Hashing using hash functions  $h_2$  and  $h_3$ . (3 Points)

Write down every intermediate step!

## Exercise 2: Hashing with Chaining

Given a Hash Table of size m and an arbitrary hash function  $h: S \mapsto \{0, ..., m-1\}$ . Let S be a set of at least  $y \cdot m$  elements, so  $|S| \ge y \cdot m$ .

- a) Show that S has a subset Y of at least y elements (hence  $|Y| \ge y$ ) such that  $h(x_1) = h(x_2)$  for all  $x_1, x_2 \in Y$ . (4 Points)
- b) What does the result of a) tells us about the Worst-Case runtime of "find" in a hash table with Chaining (if the table is filled with all the elements of S before we call "find")? (1 Point)

## **Exercise 3: Application of Hashtables**

Consider the following algorithm:

| Algorithm 1 algorithm                           | $\triangleright$ Input: Array A of length n with integer entries |
|-------------------------------------------------|------------------------------------------------------------------|
| 1: for $i = 1$ to $n - 1$ do                    |                                                                  |
| 2: for $j = 0$ to $i - 1$ do                    |                                                                  |
| 3: <b>for</b> $k = 0$ to $n - 1$ <b>do</b>      |                                                                  |
| 4: <b>if</b> $ A[i] - A[j]  = A[k]$ <b>then</b> |                                                                  |
| 5: <b>return</b> true                           |                                                                  |
| 6: <b>return</b> false                          |                                                                  |

<sup>1</sup>We define the digit sum of k by  $\overline{k}$ .

(5 Points)

## (10 Points)

(2 Points)

- (a) Describe what algorithm computes and analyse its asymptotical runtime. (3 Points) Hint: The difference |A[i] - A[j]| may become arbitrarily large.
- (b) Describe a different algorithm  $\mathcal{B}$  for this problem (i.e.,  $\mathcal{B}(A) = \texttt{algorithm}(A)$  for each input A) which uses hashing and takes time  $\mathcal{O}(n^2)$  (with proof). (3 Points)

*Hint:* You may assume that inserting and finding keys in a hash table needs  $\mathcal{O}(1)$  if  $\alpha = \mathcal{O}(1)$  ( $\alpha$  is the load of the table).

(c) Describe another algorithm for this problem without using hashing which takes time  $O(n^2 \log n)$ (with proof). (4 Points)