University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn M. Fuchs, G. Schmid

(10 Points)

Algorithms and Datastructures Winter Term 2022 Exercise Sheet 10

Due: Wednesday, January 22nd, 2pm

Exercise 1: Dijkstra's Algorithm

In the lecture we saw that the runtime of Dijkstra using Fibonacci heaps is $O(m + n \log n)$. Is this the actual runtime of the algorithm? Maybe our analysis is just not good enough! We will show that the analysis is indeed tight.

- (a) Argue that any algorithm solving SSSP (Single Source Shortest Paths) must spend at least $\Omega(m)$ time. An intuitive explanation is sufficient. (1 Point)
- (b) Proof that the Dijkstra algorithm determines shortest paths in a sorted order. For a source node v and any other two nodes $u \neq w$ then u will be marked before w if d(v, u) < d(v, w). Give a formal proof. (4 Points)
- (c) Proof that Dijkstras Algorithm needs $\Omega(n \log n)$ time if the algorithm is implemented using a comparison based heap. The idea is the following: reduce the problem of sorting *n* numbers to the SSSP problem. (Given *n* numbers in an array *A* create an instance of SSSP.) Give a precise description and a formal proof. (5 Points)

Exercise 2: Currency Exchange

(10 Points)

Consider *n* currencies w_1, \ldots, w_n . The exchange rates are given in an $n \times n$ -matrix *A* with entries a_{ij} $(i, j \in \{1, \ldots, n\})$. Entry a_{ij} is the exchange rate from w_i to w_j , i.e., for one unit of w_i one gets a_{ij} units of w_j .

Given a currency w_{i_0} , we want to find out whether there is a sequence i_0, i_1, \ldots, i_k such that we make profit if we exchange one unit of w_{i_0} to w_{i_1} , then to w_{i_2} etc. until w_{i_k} and then back to w_{i_0} .

- (a) Translate this problem to a graph problem. That is, define a graph and a property which the graph fulfills if and only if there is a sequence of currencies as described above. (4 Points)
- (b) Give an algorithm that decides in $\mathcal{O}(n^3)$ time steps whether there is a sequence of currencies as described above. Explain the correctness and runtime. (6 Points)

Hint: It is $a \cdot b > 1 \iff -\log a - \log b < 0$