

Algorithms and Datastructures Summer Term 2024 Sample Solution Exercise Sheet 8

Due: Wednesday, January 8th, 2pm

Exercise 1: BFS (5 Points)

Given the following undirected graph G:

a) Provide G as an adjacency matrix. (2 Points)

- b) Provide G as an adjacency list. (2 Points)
- c) Perform a breadth-first search on G starting from node v_1 . Write the order in which the nodes are marked (i.e., colored gray) in the algorithm. To obtain a deterministic result, always add the node with the smaller index to the FIFO-queue first, that is, v_i before v_j if $i < j$. (3 Points)

Sample Solution

a)

b) • $v_1 : v_2, v_4, v_7$

- $v_2 : v_1, v_3, v_5$
- $v_3 : v_2, v_4, v_7, v_{10}$
- $v_4 : v_1, v_3, v_5, v_6$
- $v_5 : v_2, v_4, v_6$
- $v_6 : v_4, v_5$
- $v_7 : v_1, v_3, v_8$
- $\bullet \;\; v_8 : v_7 , v_9$
- $v_9 : v_8, v_{10}$
- v_{10} : v_3 , v_9 , v_{11}
- $\bullet\ v_{11}:v_{10}$

c)

Exercise 2: DFS (6 Points)

We define 2 timestamps for each node (as in Slide 29):

 \bullet $t_{v,1}\!\!:$ Time when node v is colored gray by the DFS search

• $t_{v,2}$: Time when node v is colored black by the DFS search

Additionally, consider the following *directed* graph $G = (V, E)$ given with

\n- $$
V = \{u_1, u_2, u_3, u_4, u_5\}
$$
\n- $E = \{(u_1, u_2), (u_1, u_3), (u_2, u_3), (u_3, u_4), (u_4, u_1), (u_5, u_1), (u_5, u_3), (u_5, u_4)\}$
\n

a) Draw G. (2 Points)

- b) Write the processing interval $[t_{v,1}, t_{v,2}]$ for each node in G. Similar to part 1c), if multiple nodes could be visited next by the depth-first search, always choose the one with the smallest index (and thus we also start with u_1). (2 Points)
- c) For each edge, indicate whether it is a Tree Edge, Backward Edge, Forward Edge, or Cross **Edge.** (2 $Points$)

Sample Solution

ac) We label a Tree Edge by T , a Backward Edge by B (Backward Edge), a Forward Edge by F and a Cross Edge by C :.

- b) $u_1 : [1, 8]$
	- $u_2 : [2, 7]$
	- $u_3 : [3, 6]$
	- u_4 : [4, 5]
	- $u_5 : [9, 10]$

Exercise 3: Cycle search (9 Points)

- a) How many edges m can an undirected connected graph with n nodes have at most? Justify your answer. $(2 \; Points)$
- b) Show that every undirected connected graph which contains no cycle^{[1](#page-2-0)} has exactly $n 1$ edges (where *n* is the number of nodes of the graph). $(4 \; Points)$ Hint: You can prove this statement, for example, by induction on $n \geq 1$.
- c) Given an undirected connected graph $G = (V, E)$ with $n = |V|$. Provide an algorithm that decides in $\mathcal{O}(n)$ time whether G contains a cycle or not. Specify explicitly in which data structure G should be given. $(3 \; Points)$

¹A cycle is a path $v_1, \ldots, v_k \in V$ in a graph where there is also an edge between the start and the end node, i.e., $\{v_1, v_k\} \in E.$

Sample Solution

a) A graph has the maximum number of edges when every node is connected to every other node. This means each node has a degree of $n-1$. We now fix an order of the nodes $v_1, ..., v_n$ and count the "not yet counted" edges for each. Thus, v_1 has exactly $n-1$ edges, v_2 still has $n-2$ edges (since the edge between v_1 and v_2 has already been counted), v_3 has $n-3$ edges, and so on. Therefore, we have:

$$
m \le \sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n-1} i = \frac{(n-1) \cdot n}{2}
$$

Another approach would be to calculate how many 2-element subsets there are of an *n*-element set. There are exactly $\binom{n}{2}$ $\binom{n}{2} = \frac{n!}{2! \cdot (n-2)!} = \frac{n \cdot (n-1)}{2!} = \frac{(n-1) \cdot n}{2}$ $rac{-1}{2}$.

b) A connected graph without cycles has exactly $n - 1$ edges. Proof by induction. *Base case:* For $n = 1$ the graph has no edges.

Induction hypothesis: Every such graph with $k \leq n-1$ nodes has $k-1$ edges.

Inductive step: We now show that the hypothesis also holds for a graph G with n nodes. Every graph G with n nodes can be composed of a node v which is connected to $l \geq 1$ disjoint subgraphs $G_1, ..., G_l$ of G. Since G is acyclic, each of these subgraphs is also acyclic, and the only connection between two subgraphs is through the node v . Without loss of generality, let us say that G_i has exactly n_i nodes (for each of these subgraphs). Since $n_i \leq n-1$ for all i, it follows from the induction hypothesis that G_i has exactly $n_i - 1$ edges. We can now calculate the number of edges m in G as follows:

$$
m = deg(v) + \sum_{i=1}^{l} (n_i - 1) = l + \sum_{i=1}^{l} n_i - \sum_{i=1}^{l} 1 = \sum_{i=1}^{l} n_i = n - 1
$$

Here, $deg(v) = l$, since v is connected to each of the l subgraphs, and $\sum_{i=1}^{l} n_i = n - 1$ because this is the sum over all nodes in G excluding v .

c) This task could theoretically be solved using either depth-first or breadth-first search. Here, we use breadth-first search and assume that G is given as an adjacency list. We perform the breadth-first search "normally", but we also record for each node v the node u from which it was first reached. This node u is called the **parent** of v . If v has a marked neighbor that is not its parent, then there is a cycle in the tree, and we return false. This procedure has the same runtime as breadth-first search, i.e., $O(n+m)$. If $m = O(n^2)$ is, as in task a), then the runtime is obviously too slow. However, we know from b) that if G is acyclic, it only has $n-1$ edges. We can therefore terminate the procedure after $n-1$ steps and return false if there are still unvisited nodes in the FIFO queue. Thus, the runtime is $O(n)$.

To justify why a cycle is found when node v has an already marked node, say w , as a neighbor: This would imply that there is a node s from which there is a path to both w and v . The edge between w and v connects these paths into a cycle.