

Algorithms and Datastructures Summer Term 2024 Sample Solution Exercise Sheet 8

Due: Wednesday, January 8th, 2pm

Exercise 1: BFS

Given the following undirected graph G:

a) Provide G as an adjacency matrix. (2 Points)

- b) Provide G as an adjacency list.
- c) Perform a breadth-first search on G starting from node v_1 . Write the order in which the nodes are marked (i.e., colored gray) in the algorithm. To obtain a deterministic result, always add the node with the smaller index to the FIFO-queue first, that is, v_i before v_j if i < j. (3 Points)

(2 Points)

(5 Points)

Sample Solution

a)

v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	
$\int 0$	1	0	1	0	0	1	0	0	0	0 \	v_1
1	0	1	0	1	0	0	0	0	0	0	v_2
0	1	0	1	0	0	1	0	0	1	0	v_3
1	0	1	0	1	1	0	0	0	0	0	v_4
0	1	0	1	0	1	0	0	0	0	0	v_5
0	0	0	1	1	0	0	0	0	0	0	v_6
1	0	1	0	0	0	0	1	0	0	0	v_7
0	0	0	0	0	0	1	0	1	0	0	v_8
0	0	0	0	0	0	0	1	0	1	0	v_9
0	0	1	0	0	0	0	0	1	0	1	v_{10}
$\int 0$	0	0	0	0	0	0	0	0	1	0 /	v_{11}

b) • $v_1: v_2, v_4, v_7$

- $v_2: v_1, v_3, v_5$
- $v_3: v_2, v_4, v_7, v_{10}$
- $v_4: v_1, v_3, v_5, v_6$
- $v_5: v_2, v_4, v_6$
- $v_6: v_4, v_5$
- $v_7: v_1, v_3, v_8$
- $v_8: v_7, v_9$
- $v_9: v_8, v_{10}$
- $v_{10}: v_3, v_9, v_{11}$
- $v_{11}:v_{10}$

c)

Exercise 2: DFS

(6 Points)

We define 2 timestamps for each node (as in Slide 29):

• $t_{v,1}$: Time when node v is colored gray by the DFS search

• $t_{v,2}$: Time when node v is colored black by the DFS search

Additionally, consider the following *directed* graph G = (V, E) given with

•
$$V = \{u_1, u_2, u_3, u_4, u_5\}$$

• $E = \{(u_1, u_2), (u_1, u_3), (u_2, u_3), (u_3, u_4), (u_4, u_1), (u_5, u_1), (u_5, u_3), (u_5, u_4)\}$

a) Draw G.

- b) Write the processing interval $[t_{v,1}, t_{v,2}]$ for each node in G. Similar to part 1c), if multiple nodes could be visited next by the depth-first search, always choose the one with the smallest index (and thus we also start with u_1). (2 Points)
- c) For each edge, indicate whether it is a **Tree Edge**, **Backward Edge**, **Forward Edge**, or **Cross Edge**. (2 Points)

Sample Solution

ac) We label a Tree Edge by T, a Backward Edge by B (Backward Edge), a Forward Edge by F and a Cross Edge by C:.

- b) $u_1: [1,8]$
 - $u_2: [2,7]$
 - $u_3: [3, 6]$
 - $u_4: [4,5]$
 - $u_5: [9, 10]$

Exercise 3: Cycle search

(9 Points)

(2 Points)

- a) How many edges m can an undirected connected graph with n nodes have at most? Justify your answer. (2 Points)
- b) Show that every undirected connected graph which contains no cycle¹ has exactly n 1 edges (where n is the number of nodes of the graph). (4 Points) Hint: You can prove this statement, for example, by induction on $n \ge 1$.
- c) Given an undirected connected graph G = (V, E) with n = |V|. Provide an algorithm that decides in $\mathcal{O}(n)$ time whether G contains a cycle or not. Specify explicitly in which data structure G should be given. (3 Points)

¹A cycle is a path $v_1, \ldots, v_k \in V$ in a graph where there is also an edge between the start and the end node, i.e., $\{v_1, v_k\} \in E$.

Sample Solution

a) A graph has the maximum number of edges when every node is connected to every other node. This means each node has a degree of n-1. We now fix an order of the nodes $v_1, ..., v_n$ and count the "not yet counted" edges for each. Thus, v_1 has exactly n-1 edges, v_2 still has n-2 edges (since the edge between v_1 and v_2 has already been counted), v_3 has n-3 edges, and so on. Therefore, we have:

$$m \le \sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n-1} i = \frac{(n-1) \cdot n}{2}$$

Another approach would be to calculate how many 2-element subsets there are of an *n*-element set. There are exactly $\binom{n}{2} = \frac{n!}{2! \cdot (n-2)!} = \frac{n \cdot (n-1)}{2!} = \frac{(n-1) \cdot n}{2!}$.

b) A connected graph without cycles has exactly n - 1 edges. Proof by induction. Base case: For n = 1 the graph has no edges.

Induction hypothesis: Every such graph with $k \leq n-1$ nodes has k-1 edges.

Inductive step: We now show that the hypothesis also holds for a graph G with n nodes. Every graph G with n nodes can be composed of a node v which is connected to $l \ge 1$ disjoint subgraphs G_1, \ldots, G_l of G. Since G is acyclic, each of these subgraphs is also acyclic, and the only connection between two subgraphs is through the node v. Without loss of generality, let us say that G_i has exactly n_i nodes (for each of these subgraphs). Since $n_i \le n - 1$ for all i, it follows from the induction hypothesis that G_i has exactly $n_i - 1$ edges. We can now calculate the number of edges m in G as follows:

$$m = deg(v) + \sum_{i=1}^{l} (n_i - 1) = l + \sum_{i=1}^{l} n_i - \sum_{i=1}^{l} 1 = \sum_{i=1}^{l} n_i = n - 1$$

Here, deg(v) = l, since v is connected to each of the l subgraphs, and $\sum_{i=1}^{l} n_i = n-1$ because this is the sum over all nodes in G excluding v.

c) This task could theoretically be solved using either depth-first or breadth-first search. Here, we use breadth-first search and assume that G is given as an adjacency list. We perform the breadth-first search "normally", but we also record for each node v the node u from which it was first reached. This node u is called the **parent** of v. If v has a marked neighbor that is not its parent, then there is a cycle in the tree, and we return *false*. This procedure has the same runtime as breadth-first search, i.e., O(n + m). If $m = O(n^2)$ is, as in task a), then the runtime is obviously too slow. However, we know from b) that if G is acyclic, it only has n - 1 edges. We can therefore terminate the procedure after n - 1 steps and return false if there are still unvisited nodes in the FIFO queue. Thus, the runtime is O(n).

To justify why a cycle is found when node v has an already marked node, say w, as a neighbor: This would imply that there is a node s from which there is a path to both w and v. The edge between w and v connects these paths into a cycle.