
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures

Winter Term 2022

Sample Solution Exercise Sheet 10
Due: Wednesday, January 22nd, 2pm

Exercise 1: Dijkstra’s Algorithm (10 Points)

In the lecture we saw that the runtime of Dijkstra using Fibonacci heaps is O(m + n log n). Is this
the actual runtime of the algorithm? Maybe our analysis is just not good enough! We will show that
the analysis is indeed tight.

(a) Argue that any algorithm solving SSSP (Single Source Shortest Paths) must spend at least Ω(m)
time. An intuitive explanation is sufficient. (1 Point)

(b) Proof that the Dijkstra algorithm determines shortest paths in a sorted order. For a source node
v and any other two nodes u 6= w then u will be marked before w if d(v, u) < d(v, w). Give a
formal proof. (4 Points)

(c) Proof that Dijkstras Algorithm needs Ω(n log n) time if the algorithm is implemented using a
comparison based heap. The idea is the following: reduce the problem of sorting n numbers to
the SSSP problem. (Given n numbers in an array A create an instance of SSSP.) Give a precise
description and a formal proof. (5 Points)

Sample Solution

(a) Suppose the algorithm ran in T (m) ∈ o(m) time, then there exists an m0 such that T (m0) ≤ 1
2m0

1.
As a result the algorithm will only see half of all edges. Now it is impossible for the algorithm to
determine wether the shortest paths could be improved using the unknown edges.

(b) Dijkstra marks a node u once the correct shortest path to u is computed. This happens exactly
when u is removed from the priority queue. So lets suppose v is the source node and u 6= w are
two other nodes such that d(v, u) < d(v, w). We will prove that u gets marked first.
Since d(v, u) < d(v, w) it follows that d(v, p1) ≤ . . . ≤ d(v, pk) < d(v, w) for the shortest path
(v = p0, p1, . . . , pk = u)2

Seeing as p1 is a direct neighbor of v, it will be inserted into the priority queue in the first step.
Whenever a pi gets marked pi+1 will immediately be added to the priority queue before another
node gets removed from the priority queue. As a result: As long as pk = u is not marked itself, one
of {p1, . . . , pk = v} is in the priority queue. Since d(v, p1) ≤ . . . ≤ d(v, pk) < d(v, w) each of these
pi would be chosen over w and as a result the entire path gets handled before w is considered.
This immediately implies that d(v, u) is determined before d(v, w).

(c) Suppose Dijkstras algorithm runs in time TDij(n) we will show that we can sort n numbers in
time O(n) + TDij(n + 1). First we ensure, that all numbers are ≥ 0. If there exists a negative
number in A, we add min{A[i]}i∈[n] to all numbers to ensure that all numbers are ≥ 0.

1This is a direct consequence of the o(m) definition
2By optimality of subpaths from the lecture.

Figure 1: Die Konstruktion um das Sortieren von n Zahlen als SSSP Instanz zu lösen.

Given n positive numbers in an Array A, we generate an instance of SSSP on a star graph. The
middle node v will be the source node and to it we attach n nodes v0, . . . , vn−1. The weight of
the edge {v, vi} will be exactly A[i]. Refer to Figure 1 for a visualisation. Clearly the shortest
path from v to any vi is to use the edge {v, vi} so d(v, vi) = A[i]. Now we simply use the order
in which the nodes are marked as the sorted order of the n numbers A[i], by exercise b) this is a
correct sorted order. If we initially added min{A[i]}i∈[n], then we need to substract it again from
every element of the sorted order.
The SSSP Instance has n + 1 nodes and can be created in O(n) time since it contains only n
edges. Writing back the sorted values into A requires at most O(n) extra time, so in total we have
O(n) + TDij(n + 1) time spent.
Now suppose that TDij(n) ∈ o(n log n) then the above construction gives a comaprison based sort-
ing algorithm in o(n log n) contradicting the comparison based sorting lowerbound of Ω(n log n).
Therefore TDij(n) ∈ Ω(n log n) as claimed.

Exercise 2: Currency Exchange (10 Points)

Consider n currencies w1, . . . , wn. The exchange rates are given in an n× n-matrix A with entries aij
(i, j ∈ {1, . . . , n}). Entry aij is the exchange rate from wi to wj , i.e., for one unit of wi one gets aij
units of wj .
Given a currency wi0 , we want to find out whether there is a sequence i0, i1, . . . , ik such that we make
profit if we exchange one unit of wi0 to wi1 , then to wi2 etc. until wik and then back to wi0 .

(a) Translate this problem to a graph problem. That is, define a graph and a property which the
graph fulfills if and only if there is a sequence of currencies as described above. (4 Points)

(b) Give an algorithm that decides in O(n3) time steps whether there is a sequence of currencies as
described above. Explain the correctness and runtime. (6 Points)

Hint: It is a · b > 1⇐⇒ − log a− log b < 0

Sample Solution

(a) We define a weighted graph G = (V,E,w) with V = {1, . . . , n}, E = V 2 (i.e., the graph is directed
and complete) and w(i, j) = aij (i.e., A is the adjacency matrix). A sequence of currencies as
described exists if and only if there is a cycle (i0, i1, . . . , ik, i0) such that

k−1∏
j=0

w(ij , ij+1) · w(ik, i0) > 1 . (1)

(b) In the adjacency matrix, we replace aij by − log aij . That is, we define a graph G = (V,E,w′)
with V and E as before and w′(i, j) = − logw(i, j). We run Bellman-Ford on G′ with source i0.
This algorithm checks if G′ contains a negative cycle, i.e., nodes i0, . . . , ik with

k−1∑
j=0

w′(ij , ij+1) + w′(ik, i0) < 0

⇐⇒
k−1∑
j=0

− logw(ij , ij+1)− logw(ik, i0) < 0

⇐⇒
k−1∑
j=0

logw(ij , ij+1) + logw(ik, i0) > 0

⇐⇒ log

k−1∏
j=0

w(ij , ij+1) · w(ik, i0)

 > 0

⇐⇒
k−1∏
j=0

w(ij , ij+1) · w(ik, i0) > 1 .

So the algorithm checks property (1) from part (a). The runtime of Bellman-Ford is O(|V | · |E|).
With |V | = n and |E| = n2 we obtain a runtime of O(n3).

