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Task 1: Short Questions (40 Points)

(a) Consider a parallel machine with n memory cells c1, . . . , cn. Assume there is a value x
in memory cell c1, which must be copied to the other n−1 cells c2, . . . , cn of the shared
memory. There are p ≥ n processors. Formulate parallel algorithms that solve this task as
fast as possible for the EREW and the CREW PRAM computational models, respectively.
State the according work and depth of your algorithms. (7 Points)

(b) We are given a set of n time intervals [s1, e1], . . . , [sn, en] such that starting and ending
times, i.e., s1, s2, . . . , sn, e1, e2, . . . , en are 2n distinct integers. The goal is to select a largest
possible non-overlapping set of intervals. Consider the following strategy; as far as we can,
we repeatedly choose the interval with the largest starting time that is not overlapping the
already chosen intervals. Prove or disprove whether this greedy approach computes an
optimal solution. (6 Points)

(c) We are given a weighted directed graph G = (V, ~E), where w : ~E → R+ defines weights
of the edges. We would like to find the maximum-weight acyclic subgraph of G. Provide a
1/2-approximation algorithm for the problem. Show the correctness of your algorithm.

Hint: Start with an arbitrary global order of the nodes. (8 Points)

(d) We are given a directed weighted graph G = (V,E), where w : ~E → R+ defines weights
of the edges. Consider also a function b : V → N that defines some indegree bound for
each node. We would like to find a subset E ′ ⊆ E of maximum total weight such that every
node u ∈ V has indegree at most b(u) in graph G′ = (V,E ′). Show that the set of feasible
solutions form a matroid and thus, this problem can be solved by using the greedy algorithm
for matroids. (7 Points)

(e) In the lecture, we studied a binary counter that supports a single operation for incrementing
the counter by 1 and where the cost of such an increment operation equals the number
of bits that need to be changed in the binary representation of the counter value. Suppose
the counter is initialized to a value containing b 1s in its binary representation. Show that
the cost of performing n increment operations is O(n+ b) (do not assume b is constant).

(6 Points)

(f) Given a regular, bipartite graph, show that it has a perfect matching. (6 Points)
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Task 2: Load Balancing (20 Points)

Consider the load balancing problem from the lecture, where n jobs with processing times
t1, . . . , tn must be scheduled on m machines M1, . . . ,Mm to minimize the maximum total load
on any machine (i.e., minimize the makespan T ). For this task, assume that ti+1 ≤ αti for all
1 ≤ i < n and some constant 0 < α < 1.

We use the simple “longest processing time first” (LPT) scheduling algorithm, where we iter-
ate through the jobs by order of descending processing time and assign the current job to the
machine with the currently lowest load.

Hint:
∑∞

i=0 α
i = 1

1−α .

(a) Show that LPT is optimal for α ≤ 1
2
. (5 Points)

(b) Show that LPT gives a
(

α
1−α

)
-approximation for α > 1

2
. (6 Points)

(c) Show that LPT gives a
(
1+2α
1+α

)
-approximation (better than the above for α > 1

2
close to 1).

(9 Points)
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Task 3: Online Bin packing (22 Points)

Consider the following online bin packing problem. A sequence of items each with some size
in the interval (0, 1] arrives one-by-one in an online fashion. Additionally there are bins where
all items must be packed into. The sum of the sizes of items inside any bin can be at most 1.
Each item must be packed into a bin as soon as it arrives and that decision is final. The goal is
to minimize the number of required bins to package all items.

We introduce the Next First (NF) algorithm: Initially take an empty bin as current bin. Put
arriving items into that bin as long as they fit. If an arriving item does not fit, close the bin and
take a new, empty bin as current bin and put the item in there. For a given sequence of items I ,
let NF(I) be the number of bins required by the online Next First algorithm and let OPT(I) be
the number of bins required by an optimal offline algorithm.

(a) Show that NF is strictly 2-competitive (i.e., show that for every sequence of items I , NF(I) ≤
2·OPT(I)). (7 Points)

(b) Show that there is a fixed constant c > 0, such that for any positive n, there is an input
sequence I of n items, where NF(I) ≥ 2·OPT(I)− c. (8 Points)

(c) Show that for every deterministic online bin packing algorithmA, there is an input sequence
I for which the algorithm uses at least A(I) ≥ 3

2
·OPT(I) bins. (7 Points)

Hint: Think of a short worst case sequence. If you can show the same statement for a
smaller constant 1 < c < 3/2, you will get partial points.
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Task 4: Workflow (12 Points)

A company has to handle three projects, P1, P2, P3, over the next 4 months. Each project has
a release month, a deadline month and a work requirement measured in person-months (one
person-month is the amount of work that a single person can do in one month).

Project release deadline work req.

P1 1 2 11
P2 2 4 10
P3 2 3 9

Each month, 8 employees are available. Employees can work on a project from its release
month to its deadline month (each including). Due to the internal structure of the company, no
more than 6 engineers can work at the same time on the same project.

The aim is to find a feasible workforce plan, i.e., to determine for each project and month the
number of employees working on it, subject to the above restrictions, such that all projects get
completed.

(a) Formalize the above problem as a flow problem. Draw the flow network and state what flow
is required to get a feasible solution. (8 Points)

(b) Give a solution to the given workflow problem or argue why it is unsolvable. (4 Points)
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Task 5: Randomized Maximum 3-SAT (26 Points)

Consider the 3-SAT problem with n clauses over a set of variables x1, . . . , xk with k ≤ 3n.1

Remark: In the following, if you are not able to prove one of the parts, you can always assume
the claimed statement of the part to solve the subsequent parts.

(a) Show that a uniformly random assignment satisfies 7
8
n clauses in expectation. (5 Points)

(b) Use (a) to show that for 0 < ε ≤ 1
2

the probability that at least 7
8
n(1−ε

7
) clauses are satisfied

is at least ε
2
. (7 Points)

Hint: 1
1+ε
≤ 1− ε

2
.

(c) Use (b) for an appropriate value of ε to show that at least 7
8
n clauses are satisfied with

probability at least 1
4n

. (7 Points)

Hint: Note that the actual number of satisfied clauses is an integer.

(d) Use (c) to show that there is an algorithm that finds an assignment of variables that satisfies
at least 7

8
n clauses in time O(n2 log n) with high probability. (7 Points)

Hint: ∀m ≥ 1 : (1− 1
m
)m ≤ 1

e
.

1An instance of the n-clause 3-SAT problem over a set of variables x1, . . . , xk is a boolean formula
f(x1, . . . , xk) = C1 ∧ . . . ∧ Cn, where the Ci are 3-clauses. A 3-clause Ci is of the form Ci = l1 ∨ l2 ∨ l3 with
literals l1, l2, l3 ∈ {x1, . . . xk, x1, . . . xk} (xj denotes the negation of xj). An assignment (x1, . . . , xk) ∈ {0, 1}k
satisfies a clause Ci if Ci evaluates to 1 under the assignment. The goal of the Maximum 3-SAT problem is to
satisfy as many clauses as possible.
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