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Do not open or turn until told so by the supervisor!

e Write your name and matriculation number on this page and sign the document.

e Your signature confirms that you have answered all exam questions without any help, and that you have
notified exam supervision of any interference.

e You are allowed to use a summary of five (single-sided) A4 pages.

e Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
e You may write your answers in English or German language.

e No electronic devices are allowed.

e Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise the one
yielding the minimal number of points is considered.

e Detailed steps might help you to get more points in case your final result is incorrect.

e The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain your
answer carefully and in sufficient detail.

e The keywords Give..., State... or Describe... indicate that you need to provide an answer solving the task at
hand but without proof or deep explanation (except when stated otherwise).

e You may use information given in a Hint without further explanation.

o Read each task thoroughly and make sure you understand what is expected from you.
e Raise your hand if you have a question regarding the formulation of a task.

e Write your name on all sheets!
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Maximum 40 28 15 15 22 120
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Task 1: Short Questions (40 Points)

(a) (7 Points) Consider the following Fibonacci heap (black nodes are marked, white nodes are un-
marked). How does the given Fibonacci heap look after a decrease-key (v,2) operation and
how does it look after a subsequent delete-min operation?

min

(b) (6 Points) Let G = (V, E) be a flow network with source s and sink ¢ and non-negative integer
capacities. Let (S,V \ S) be a minimum s-¢ cut with capacity C' and e a crossing edge of the cut,
i.e., an edge going from S to V' \ S. Describe how to decide in time O(|E| - C') whether or not e is a
crossing edge of all minimum s-¢ cuts.

(c) (6 Points) Consider a game board with r rows and ¢ columns (i.e., an r X ¢ grid). Imagine that a robot
sits on the upper left cell of this board. The robot can only move in two directions; to the neighboring
cell on the right or the neighboring cell below. On each cell (4, j), there is a number n; ;) of coins
that the robot picks up when stepping on that cell. Describe an O(r - ¢)-time algorithm to find a path
for the robot from the top-left to the bottom-right cell of the board such that the total number of coins
that the robot collects is maximized. Analyze the running time.

(d) (8 Points) Consider the EREW PRAM model. Assume we are given an array A of n positive integers
and a positive integer x which is stored in the shared memory. We want to find the number of
subarrays of A whose entries sum up to x. That is, we want to find the number of pairs (i, j) with
0<i<j<n-—1suchthat> ] . A[k] = x. Show that there is an algorithm that solves this problem
in time O(log® n) using n processors.

Hint: Solve the problem in the CREW PRAM model first.

(e) (7 Points) A hypergraph is a generalization of an undirected graph in which edges consist of arbitrary
subsets of vertices. That is, a hypergraph consists of a set of nodes V' and a set of edges E C P(V)\ (.
A hypergraph is called k-uniform if each edge has size £, i.e., contains exactly k£ nodes. For example,
a simple, undirected graph is a 2-uniform hypergraph.

A matching of a hypergraph is a set of edges which are pairwise disjoint. The aim is to approximate
a maximum matching of a 3-uniform hypergraph.

(i) Provide a 3-uniform hypergraph G and a maximal matching M such that | M| = ‘Ls' where M*
1s a maximum matching.

(ii) Show that any maximal matching of a 3-uniform hypergraph is a (1/3)-approximate solution of
a maximum matching.

(f) (6 Points) Consider a counter C represented by an n-bit binary string which is initially set to 0. On C
we can execute the operations increment and decrement, which increment/decrement C by 1.
The cost of an operation is the number of bits that are flipped.

What can you say about the worst-case amortized cost per operation if you only have increment
operations compared to the case where we allow an arbitrary sequence of increment and decrement
operations?
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Task 2: Vertex Coloring (28 Points)

A vertex coloring of a graph is an assignment of colors to the vertices such that adjacent nodes have
different colors. Assume we are given a simple, undirected graph G = (V, E') with n vertices such that G
can be colored with only 3 colors. We want to show that there is a polynomial-time algorithm to color G
with at most O(y/n) colors.

(a) (4 Points) Show that for every vertex u € V, the graph induced by the neighbors of w is a bipartite
graph. That is, (V’, E’) is a bipartite graph where

V'={veV|{u,v} € E} and E' = {{v,w} € E|v,w € V'}

(b) (6 Points) Show that a bipartite graph with n nodes and m edges can be colored with 2 colors in time
O(m+n).

(¢) (7 Points) Describe how to color a part of the nodes with at most O(+/n) different colors in polynomial
time, such that afterwards, there is no uncolored node which has more than y/n uncolored neighbors.
Hint: Look for an uncolored node u with more than \/n uncolored neighbors and use parts (a) and

(b). How often do you need to repeat this process?

(d) (6 Points) Show that every graph with maximum degree A can be colored with A + 1 colors in
polynomial time.

(e) (5 Points) Conclude the proof by showing that there is an algorithm to color G with at most O(y/n)
colors in polynomial time.

Hint: You can use parts (c) and (d) also if you did not solve them.
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Task 3: Online Algorithms (15 Points)

Assume you have 1 Euro and want to exchange it to Dollars during the next k£ days. More specifically,
you must choose aday ¢ € {1, ..., k} on which you trade the whole Euro. Exchanging back and forth or
partly exchanging the Euro is not allowed. On each day ¢ you learn the exchange rate z; which is valid
for that day (i.e., x; is the amount of Dollars you get for 1 Euro). We assume x; € [1, a], where a > 1isa
real number which is known. The aim is to get the maximum amount of Dollars for your 1 Euro.

(a) (8 Points) Give a deterministic online algorithm such that ALG > O—jg, where ALG is the amount
of Dollars given by your algorithm and OPT the amount given by an optimal solution. Prove the
competitive ratio.

(b) (7 Points) Prove that there is no deterministic algorithm with a better competitive ratio than the one
from part (a). That is, for ¢ < +/a there is no deterministic algorithm such that ALG > g in all
cases.
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Task 4: Presentation Scheduling (15 Points)

Assume there are n students sy, ..., s,. Each student has finished some individual project and now has
to present the results to some professors. There are k professors p, ..., px. Each professor p; hands in a
list L; € {s1,...,s,} of students for whose projects he/she is an expert. Each professor p; is willing to
attend at most a; presentations.

The exam regulations require that at each presentation, x professors that are experts on the topic are
present.

(a) (8 Points) Describe a polynomial-time algorithm that computes an assignment of the professors to the
student’s presentations such that the given constraints are fulfilled, or reports that no such assignment
exists.

(b) (7 Points) As there is a shortage of professors, the university loosens the requirements such that among
the = professors that need to be present at each presentation, at least ¥ need to be an expert on the
topic, for some y < . Describe how to construct a feasible schedule in this case.
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Task 5: Randomization - Dominating Set in Regular Graphs (22 Points)

Let G = (V, E) be an undirected graph. A set D C V is called a dominating set if each node in V' is
either contained in D or adjacent to a node in D.

We consider the following randomized algorithm for d-regular graphs (i.e., graphs in which each node
has exactly d neighbors).

Algorithm 1 domset (G)
1: D=0
2: Each node joins D independently with probability p := min{1
3: Each node that is neither in D nor has a neighbor in D joins D
4: return D

clnn
7 d+1

} for some constant ¢ > 0

For simplicity, in all tasks you may assume that C;j:f <1,ie.,thatp = C('ilj:ln.

(a) (6 Points) Show that for ¢ > 1, the expected size of D (after the execution of domset) is at most

cnlnn
d+1 + L.

Hint: Use the inequality (1 — x) < e™".

(b) (6 Points) Show that after line 2 of domset, D has size O (%42%*) with probability at least 1 — .

Hint: You might want to use Chernoff’s Bound: If Xy,...,X, is a sequence of independent 0-1
random variables, X = )" X, and 1 = E[X], then for any § > 0 we have

. 2
min{é,5
_ {3 }M

Pr(X > (1+d)u) <e

(¢c) (4 Points) Show that for ¢ > 2, with probability at least 1 — %, no node joins D in line 3 of domset.

(d) (2 Points) Conclude that for ¢ > 2, domset returns a dominating set of size O (%42*) with probabil-
ity at least 1 — 2.

(e) (4 Points) Show that for ¢ > 2, domset computes an O(Inn)-approximation of a minimum domi-
nating set (i.e., a dominating set of minimum size) with probability at least 1 — %

Hint: You can use part (d) also if you did not solve it.
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