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Do not open or turn until told so by the supervisor!

• Write your name and matriculation number on this page and sign the document.

• Your signature confirms that you have answered all exam questions yourself without any help, and that
you have notified exam supervision of any interference.

• You are allowed to use a summary of six handwritten A4 pages.

• No electronic devices are allowed.

• Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!

• You may write your answers in English or German language.

• Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise the
one yielding the minimal number of points is considered.

• Detailed steps might help you to get more points in case your final result is incorrect.

• The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain
your answer carefully and in sufficient detail.

• The keywords Give..., State... or Describe... indicate that you need to provide an answer solving the
task at hand but without proof or deep explanation (except when stated otherwise).

• You may use information given in a Hint without further explanation.

• Read each task thoroughly and make sure you understand what is expected from you.

• Raise your hand if you have a question regarding the formulation of a task or if you need additional
sheets of paper.

• A total of 45 points is sufficient to pass and a total of 90 points is sufficient for the best grade.

• Write your name on all sheets!

Task 1 2 3 4 5 6 Total

Maximum 36 13 18 18 13 22 120

Points
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Task 1: Short Questions (36 Points)

(a) Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How
does the given Fibonacci heap look after decrease-key(v, 3) operation and how does it look
after a subsequent delete-min operation? (8 Points)

31

35

5

18 6

12 20 8

22

27

2

13

15 21v

(b) Let p be a polynomial of degree n and q a polynomial of degree m < n. For simplicity, you can
assume that n is an integer multiple of m, i.e., n = k ·m for some integer k > 1. Give an algorithm
that finds the product of p and q in O(n · logm) time. (8 Points)
Hint: You may use the multiplication algorithm for the case n = m from the lecture as a subroutine.

(c) We have M children labeled from 1 to M and we have N sweets labeled from 1 to N . We have
Ai pieces of sweet i. We now want to distribute all the pieces of sweets among all the children,
however, the following conditions should be satisfied for every child j and every sweet i:

• Child j gets at most Bi,j pieces of sweet i.

• Child j gets at most Cj pieces of sweets in total.

Transform the problem into a maximum flow problem such that a maximum integer flow directly
gives a feasible solution for the problem (if such a solution exists). (6 Points)

(d) We want to divide the vertices of a graph into two groups such that the number of edges between
the two groups is maximized. Provide a polynomial-time 1/2-approximation algorithm for this
task and prove its correctness. You can either give a deterministic algorithm that always achieves
an approximation ratio of at least 1/2 or you can give a randomized algorithm that achieves an
approximation ratio of at least 1/2 in expectation. (6 Points)

(e) Assume that there are n chess players 1, . . . , n that you need to pair up for playing against each
other in a chess tournament.

There are some players who must play their next game with the white pieces and there are some
players who must play their next game with the black pieces. There are also players for whom it
does not matter if they play with the white or the black pieces.

In addition, each player i has a rating value ri, which is a positive integer.

Each chess game in the tournament must be played between exactly two players: one playing with
the white pieces and the other with the black pieces. Further, each player should play in at most
one game. Additionally, to ensure balanced games, the absolute difference in rating between the
two players in a game must be smaller than 100.

Describe a polynomial-time algorithm to determines a largest possible set of chess games that can
be arranged with the available n players. You can use algorithms from the lecture as a black box
(but you must explain which algorithms you use). (8 Points)

Bonus Question: You can gain up to 6 bonus points if you can answer the following question.
Assume that we make the (strange) requirement that the absolute difference in rating between
the two players of a game must be an odd number < 100? Argue why the problem of determining
a maximum set of possible chess games now becomes easier! (6 Points)
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Solution Task 1

3



Task 2: Cuts (13 Points)

Let G = (V,E) be a flow network with source s ∈ V , sink t ∈ V , and integer capacities ce ≥ 0 for
all e ∈ E. Give a new flow network G′ = (V,E) with the same nodes and edges as G and the same
source and sink nodes s and t as G, but with different capacities c′e ≥ 0. The capacities c′e should be
chosen such that such that any minimum s-t-cut in G′ is a minimum s-t-cut in G with the smallest
possible number of edges (among all minimum s-t-cuts in G). Prove that your capacities c′e satisfy
this property!
Hint: The capacities c′e do not need to be integers. You may consider the new capacities c′e as a
function of ce and the number of edges/nodes of the graph.
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Solution Task 2
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Task 3: Greedy Job Scheduling (18 Points)

Given n jobs 1, . . . , n, each with a processing time pi > 0 and a weight wi > 0, determine an ordering
π of the jobs such that when processing the jobs in this order, to weighted sum of completion times
(or equivalently, the weighted average completion time) is minimized.

More formally, for any i, j ∈ {1, . . . , n}, we set π(i) = j iff job j is at the ith position according to the
ordering π and we have to minimize the objective function:

min
π

n∑
i=1

wπ(i) · Cπ(i),

where the completion time Cπ(i) is defined as

Cπ(i) =
i∑

j=1

pπ(j)

For example, given 3 jobs with processing times and weights as pairs (pi, wi):

(2, 3), (1, 5), (3, 2)

The optimal schedule is 2, 1, 3 (i.e., π(1) = 2, π(2) = 1, π(3) = 3) with an objective value of 26.

(a) To start, we first look at the problem, where the weight wi = 1 for all jobs i. In this case, we
therefore need to minimize the sum of all completion times. (6 Points)
Hint: Try to write the sum of completion time as a sum in terms of the n processing times
p1, . . . , pn.

(b) Now, the weights wi can take any positive real-valued number. (12 Points)
Hint: For every job, look at the ratio of its two values.

In both cases, solve the problem in time O(n log n) and prove that your solution is correct.

6



Solution Task 3
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Task 4: Online Bin Packing (18 Points)

The Online Bin-Packing problem is a variant of the Knapsack problem. We are given an unlimited
number of bins labeled 1, 2, . . . , each of capacity 1. Further, we get a sequence of items i = 1, 2, . . . of
size si ∈ [0, 1] in an online fashion.

Whenever a new item i arrives, we are required to place the item in a bin that still has enough space
(the sizes of the items assigned to each bin must sum up to at most 1).

Our goal is to minimize the number of bins we use.

In this question we consider a simple online algorithm for this problem called First-Fit. Recall that
the bins are ordered (they are labeled 1, 2, . . . ). First-Fit places each item into the first bin that has
enough space to hold the item.

a) Show that First-Fit has a competitive ratio of at least 3/2.
Hint: There is a sequence consisting of only 4 items for which First-Fit uses 3/2 as many bins as
an optimal offline algorithm. (4 Points)

b) Show that no deterministic online algorithm can have a competitive ratio better than 3/2. (6 Points)

c) Prove that First-Fit has a competitive ratio of at most 2.
Hint: We do not require a strict competitive ratio here. (8 Points)
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9



Task 5: Dynamic Programming (13 Points)

Suppose you are given a graph G = (V,E), where each node v ∈ V is labeled with an elevation value
h(v) ∈ N. You can safely traverse an edge (u, v) ∈ E from node u to node v if and only if the absolute
difference between the elevation values of u and v is at most δ, that is, |h(u)− h(v)| ≤ δ, where δ > 0
is an integer parameter.

Our goal now is to find a longest possible walk in the graph such that the walk starts at some node
s ∈ V and ends at another node t ∈ V . The walk should consist of two segments: an uphill segment,
where the elevation must strictly increase in each step, followed by a downhill segment, where the
elevation must strictly decrease in each step.

Note that a walk in a graph is path on which nodes are allowed to repeat. Note however that in the
uphill segment, the elevation values are strictly increasing and in the downhill segment, the elevation
values are strictly decreasing. Each node can therefore appear at most once in the uphill segment and
at most once in the downhill segment. A node can however appear in the uphill and in the downhill
segment.

Your input consists of the graph G = (V,E), the elevation function h : V → N, the starting node s,
the target node t, and the parameter δ > 0. Your task is to find a longest possible walk as described
above or determine that no such walk exists.

Give an algorithm that solves the problem in time O(nm) and argue why your algorithm is correct
(where as usual n = |V | and m = |E|).

Hint: It makes sense to first solve the following problem: For every v ∈ V , find the longest path from
s to v on which the elevation values strictly increase or determine that no such path from s to v exists.
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Task 6: Independent Sets (22 Points)

Let G = (V,E) be a graph on n nodes with maximum degree ∆. Recall that an independent set is a
set I ⊆ V such that no two nodes in I are connected by an edge in E. The goal in this part is to get
a relatively large independent set of G. Consider the following parallel randomized algorithm.

Algorithm 1 IndependentSet(G) . Given G = (V,E)

1: I := φ
2: Each node v ∈ V in parallel picks an integer value Rv independently and uniformly at random

from the set {1, 2, ..., nc+2}, for some parameter c > 0.
3: for all v ∈ V do
4: if Rv < Ru for all neighbors u of v then
5: I := I ∪ {v}
6: Output I

(a) Show that all nodes v succeed in choosing a unique value Rv in step 2 of the algorithm (i.e., no
two nodes pick the same value) with probability at least

1− 1

nc
.

(8 Points)

(b) In the following, we assume that the values Rv are always chosen to be unique (e.g., step 2 is
repeated until the values are unique). Show that in this case, the expected size of I is

E[|I|] ≥ n

∆ + 1
.

(6 Points)

(c) The goal now is to show that the lower bound on the size of I only holds in expectation and not
with high probability. More specifically, show that there exists a constant p > 0 (p is independent
of n) such that for any n ≥ 6, there exists a graph Gn with n nodes for which

Pr

(
|I| < n

∆ + 1

)
≥ p

(8 Points)
Hint: For simplicity assume that n is an integer multiple of 6. You can choose Gn as a graph
consisting of six cliques C1, . . . , C6 of size n/6 such that for any i ∈ {1, . . . , 5}, cliques Ci and Ci+1

are connected by a complete bipartite graph. Try to understand which nodes are in the independent
set I and in which case, I only consists of a single node.
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