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your answer carefully and in sufficient detail.

* The keywords Give..., State... or Describe... indicate that you need to provide an answer solving
the task at hand but without proof or deep explanation (except when stated otherwise).

* You may use information given in a Hint without further explanation.
* Read each task thoroughly and make sure you understand what is expected from you.

* Raise your hand if you have a question regarding the formulation of a task or if you need additio-
nal sheets of paper.

* A total of 45 points is sufficient to pass and a total of 90 points is sufficient for the best grade.
* Write your name on all sheets!

Task 1 2 3 4 5 Total
Maximum 42 24 15 24 15 120

Points




Task 1: Short Questions (42 Points)

(a)

(b)

(c)

(d)

(e)

®

You are given a strictly monotonically decreasing function f : N — R with f(1) > 0. You
know f(n) < 0 for some unknown value n € N. The goal is to compute the number ¢ € N
such that f(i) < 0 but f(i—1) > 0, i.e. you want to know where f first becomes negative.
Give an algorithm that computes this number in running time O(log n). Briefly explain the
running time. (6 Points)

Let G = (V, E) be a directed graph with the property that for each node v, the number of
edges going into v is equal to the number of edges going out of v. Let s and ¢ be two nodes
of G such that there are k pairwise edge-disjoint paths from s to . Show that there are also
k pairwise edge-disjoint paths from ¢ to s. (8 Points)

Suppose we “simplify” Fibonacci heaps such that we do not mark any nodes that have lost a
child and consequentially also do not cut marked parents of a node that needs to be cut out
due to a decrease-key-operation. Is the amortized running time

(i) ... of the decrease-key-operation still O(1)?
(ii) ... of the delete-min-operation still O(logn)?

Explain your answers. (6 Points)

Let G = (V, F) be a directed graph with source s and sink ¢ and integral capacities. Let
(S, V'\ S) be a minimum (s, t)-cut. Give a polynomial time algorithm to determine whether
(S,V'\ S) is the unique minimum (s, t)-cut, i.e., whether it has a capacity strictly less than
all other (s, t)-cuts. Explain the correctness of your algorithm. (8 Points)

Assume you are given a randomized algorithm .4 that given a graph G with n nodes and
a maximum matching of size s, computes an integer k& < s in time 7'(n) such that with
probability at least p(n) we have k = s.

Give an algorithm with running time O(p(n)~" - T'(n) - logn) that computes the size of
a maximum matching of a graph with n nodes with probability at least 1 — % Prove the
success probability. (7 Points)

Consider a naive greedy algorithm greedy—-f1ow for the maximum flow problem:

As long as possible, find an s-t path with free capacity and add as much flow as possible to
the path.

In particular, greedy—£f1low never reduces the flow through an edge, i.e., it makes no use
of backward edges. We saw in the lecture that greedy—-f1low does not always compute a
maximum flow.

Show that greedy—-flow can perform arbitrarily bad. That is, for any o > 1, there is a
flow network such that the value of the maximum flow is more than « times the value of the
flow computed by some execution of greedy—-flow. (7 Points)
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Task 2: Subset Sum (24 Points)

Let S = {s1,...,S,} be a set of positive integers. Given a target value T' € N>; we want to
answer the question if there is a subset S’ C S that sums up to 7', i.e., ZS cg 8 = T'. The answer
should either be true or false.

(a) Give an algorithm that solves this task with running time O(n-T'). Explain the running time.
(8 Points)

(b) Lete > 0 and let 3; := [s, - ] for some scaling factor a. Let S := {51,...,5,}. Consider
the case that there exists a subset S’ C S with ZS cg Si = T'. Express o with variables

T',n, € such that in this case there is a subset S/ - S such that the following holds

= < Y si< 1+g (1)
3,€8
Prove Inequality (I)) for that value «. (6 Points)

(c) Now consider the case that there exists a subset S’ C S that fulfills Inequality (] (for « and
S :={51,...,8,} defined in part (b)). Prove that in this case there is also a subset S’ C S
with (1—-e)T' <> o5 < (1+e)T. (6 Points)

(d) Give an algorithm that has running time polynomial in /¢ that outputs true if there exists
a subset S’ C S with Zse o 8 = T and false if there does not exist any subset S’ C .S with
(1=e)T <> .co 5 < (14€)T. In other cases the output can be arbitrary. Briefly explain
correctness and running time. (4 Points)

Hint: You can use the results of (a),(b),(c) even if you did not succeed there.
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Task 3: Graph Connectivity (15 Points)

Recall that the vertex connectivity of a graph G is the maximum integer ~ such that G is k-
vertex-connected. Similarly, the edge connectivity of a graph G is the maximum integer \ such
that GG is A\-edge-connected.

(a) Let G = (V, E) be an undirected, unweighted graph with vertex connectivity . Define G’
as a graph GG where we add a new node v ¢ V' that is connected to x nodes in GG. Prove that
G’ also has vertex connectivity . (10 Points)

(b) Give an undirected, unweighted graph with vertex connectivity « and edge connectivity A
such that k < A. (5 Points)
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Task 4: Greedy Vertex Cover Algorithms (24 Points)

Let G = (V, E) be an undirected, unweighted graph. Consider the following algorithms that
give approximate solutions to the minimum vertex cover problem.

Algorithm 1 algl Algorithm 2 a1g2
1. S« 0 > create an empty set 1. S+ > create an empty set
2: while E # () do 2: while £ # () do
3: pick some edge {u,v} € £ 3 pick vertex v € V' of maximal degree
4 S <+ SuU{u,v} 4: S+ Su{v}
5: remove edges incident to w or v from 2 5 remove edges incident to v from £
6: return S 6: return S

(a) Show that algl and alg2 output valid vertex covers. (4 Points)

(b) Argue why algl provides a 2-approximation of the minimum vertex cover problem. (3 Points)

Hint: You can use results that we proved in the lecture.

(c) Argue why alg2 provides a O(logn)-approximation of the minimum vertex cover pro-
blem. (5 Points)

Hint: You can use results that we proved in the lecture.

(d) Show that the solution provided by alg2 is only a ©(log n) approximation for some graphs.
(12 Points)

Hint: Give a bipartite graph with node set V = L U R and |L| = k and |R| = O(klogk),
where alg2 outputs R but the best solution would be L.
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Task 5: Randomized Algorithms (15 Points)

Consider the Find-bill problem which is stated as follows. There are n boxes numbered from 1
to n and exactly one box contains a dollar bill. The other boxes are empty. A probe is defined
as opening a box to see if it contains the dollar bill. The objective is to locate the box contai-
ning the dollar bill while minimizing the number of probes performed. Consider the following
randomized algorithm:

Algorithm 3 rand

1: Select x € {heads, tail} uniformly at random

2: if x = heads then

3: Probe boxes in order 1, ..., n and stop if bill is located
4: else

5 Probe boxes in order n, . .., 1 and stop if bill is located

(a) Show that for any input (that is, for any position of the bill), the expected number of probes
that rand does is ”T“ (5 Points)
(b) Show that there is no better randomized algorithm than rand. That is, for any randomized
algorithm A for the Find-bill problem, there is an input such that the expected number of

probes that .4 does on this input is at least ”TH

Hint: Use Yao’s Principle. (10 Points)
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