
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Mályusz

Algorithm Theory

Exercise Sheet 7
Due: Friday, 6th of December, 2024, 10:00 am

Exercise 1: Worst Case Decrease (4 Points)

We’ve seen in the lecture that Fibonacci heaps are only efficient in an amortized sense. However,
the time to execute a single, individual operation can be large. Show that in the worst case, the
decrease-key operation can require time Ω(n) (for any heap size n).

Hint: Describe an execution in which there is a decrease-key operation that requires linear time.

Exercise 2: Fibonacci Heaps Modifications - Amortized I (5 Points)

Suppose we “simplify” Fibonacci heaps such that we do not mark any nodes that have lost a child
and consequentially also do not cut marked parents of a node that needs to be cut out due to a
decrease-key-operation. Is the amortized running time

(a) ... of the decrease-key-operation still O(1)? (1 Point)

(b) ... of the delete-min-operation still O(log n)? (4 Points)
Hint: Can we still guarantee the recursive property (proved in the lecture) i.e. a given node with
rank i has i children that have at least ranks i− 2, i− 3, ..., respectively?

Explain your answers.

Exercise 3: Fibonacci Heaps Modifications - Amortized II (11 Points)

(a) Assume that operation decrease-key never occurs. Show that in this case, the maximum rank
D(n) of a Fibonacci heap is at most ⌊log2(n)⌋. (4 Points)

(b) We want to augment the Fibonacci heap data structure by adding an operation increase-key(v, k)
to increase the key of a node v (given by a direct pointer) to the value k. The operation should have
an amortized running time of O(log n). Describe the operation increase-key(v, k) in sufficient
detail and prove the correctness and amortized running time. (7 Points)

Remark: You can use the same potential function as for the standard Fibonacci heap data structure.
Note however that after conducting increase-key(v, k) the Fibonacci heap must still be a list of
heaps, where the maximum rank D(n) ∈ O(log n).


