

Algorithm Theory Exercise Sheet 12

Due: Friday, 24th of January, 2025, 10:00 am

Exercise 1: Hidden numbers

(8 Points)

(a) You are given a uniform random permutation of the numbers of $1, \ldots, n$. Prove that if we run the following algorithm

Algorithm 1 Finding the Maximum Element in a Permutation

Require: A uniform random permutation A[1...n] of the numbers 1,...,n.

Ensure: The maximum element in A.

1: $\max SoFar \leftarrow A[1]$

▷ Initialize the maximum element as the first element

2: **for** $i \leftarrow 2$ to n **do**

▶ Iterate through the array starting from the second element

3: **if** $A[i] > \max SoFar$ **then**

4: $\max \operatorname{SoFar} \leftarrow A[i]$

▶ Update the maximum element

5: **return** maxSoFar

 \triangleright The maximum element in A

the maxSoFar value will, in *expectation*, be updated (line 4) at most H_n times where H_n is the n-th harmonic number defined by $H_n := \sum_{i=1}^n 1/i$. (4 Points) Hint: Define

$$X_i := \begin{cases} 1 & \textit{if } A[i] \textit{ is larger than all values in the prefix } A[1,...,i-1] \\ 0 & \textit{else} \end{cases}$$

and think about its expected value and how can you use it for this task?

There are n hidden integers a_i , each of them belonging to the range [1,d]. In a single query, you may choose two integers x and y $(1 \le x \le n, 1 \le y \le d)$ and ask the following question:

"Is
$$a_x \geq y$$
?"

Your goal is to determine the value of the largest element in the hidden array.

- (b) Give a (deterministic) algorithm that finds the largest element in the array using $O(n \cdot \log_2 d)$ queries. (1 Point)
- (c) In this task we want to improve the query complexity. Your objective is to modify the algorithm from b) such that, in expectation, at most $O(n + \ln n \cdot \log_2 d)$ queries are needed to find the maximum element. The algorithm itself should still be deterministic! (3 Points) Hint: Use the result of task a) and the fact that $H_n \leq 1 + \ln n$.

Exercise 2: Randomized Coloring

(12 Points)

Let G = (V, E) be a simple, undirected graph with maximum degree Δ . A (node) coloring of the graph is an assignment of colors to the nodes in a way that no two adjacent nodes are assigned with

Algorithm 2 Randomized Coloring

```
Ensure: \phi is a proper \Delta + 1 coloring
 1: Let L_v := \{1, 2, \dots, \Delta + 1\}
 2: for each uncolored node v \in V in parallel do
         v becomes active with probability p=\frac{1}{2}
 3:
 4:
         if v is active then
            Let v choose a color x_v \in L_v uniformly at random
 5:
 6:
            if no neighbor u picked x_v as well then
 7:
                 \phi(v) := x_v
                                                                                                  \triangleright v is colored now!
 8:
         if v is still uncolored then
            delete \phi(u) from L_v for all colored neighbors u.
                                                                                                         \triangleright Update L_v
 9:
```

the same color. More formal: A coloring is a mapping $\phi: V \to C$ of nodes in V to some color space C s.t. $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$.

Consider Algorithm 2 to assign colors from the colors pace $\{1, 2, ..., \Delta + 1\}$ to the nodes. Let L_v be the lists of **available** colors of v, that initially is set to the color space.

Note that in every iteration, $|L_v|$ is larger than the number of uncolored neighbors of v.

- (a) Show that a node v that is still uncolored will be colored in the next iteration with probability at least 1/4.

 (6 Points)

 Hint: Assume v is active and has k uncolored neighbors. What is the probability that v gets colored?
- (b) After how many iterations is a node $v \in V$ colored in expectation? (2 Points)
- (c) Show that Algorithm 2 terminates in $O(\log n)$ iterations with high probability. That is for a given constant c > 0, all nodes are colored within $O(\log n)$ iterations with probability at least $1 \frac{1}{n^c}$.

 (4 Points) Hint: Use the result of a) for tasks b) and c) even if you didn't manage to come up with a solution.