

Algorithm Theory Exercise Sheet 13

Due: Friday, 31st of January, 2025, 10:00 am

Exercise 1: Generalized Contraction

Let G = (V, E, w) be a weighted graph s.t. $w : V \to \mathbb{R}^+$. A cut (A, B) is a partition of V such that $V = A \cup B$, $A \cap B = \emptyset$, and $A, B \neq \emptyset$. We define the *weight of the cut* (A, B) to be the total edge weight crossing the cut.

correction after upolading the sheet: the weight are on edges and not nodes i.e. we should define $w: E \to \mathbb{R}^+$.

Devise an algorithm that runs in $O(n^4 \log n)$ rounds and returns a minimum weighted cut w.h.p. Argue its correctness and running time.

Exercise 2: Modified Contraction

Let's modify the contraction algorithm from the lecture in the following way: Instead of contracting a uniform random edge, we choose a uniform random pair of remaining nodes in each step and merge them. That is, as long as there are more than two nodes remaining, we choose two nodes $u \neq v$ uniformly at random and replace them by a new node w. For all edges $\{u, x\}$ and $\{v, x\}$ we add an edge $\{w, x\}$ and remove self-loops created at w.

- (a) Give an example graph of size at least n where the above algorithm does not work well, that is, where the probability of finding a minimum cut is exponentially small in n (show that in the second part). (2 Points)
- (b) Show that for your example the modified contraction algorithm has probability of finding a minimum cut at most a^n for some constant a < 1. (4 Points)

Exercise 3: Graph Connectivity

Let G = (V, E) be a graph with *n* nodes and edge connectivity¹ $\lambda \geq \frac{16 \ln n}{\varepsilon^2}$ (where $0 < \varepsilon < 1$). Now every edge of *G* is removed with probability $\frac{1}{2}$. We want to show that the resulting graph G' = (V, E') has connectivity $\lambda' \geq \frac{\lambda}{2}(1-\varepsilon)$ with probability at least $1-\frac{1}{n}$. This exercise will guide you to this result. Remark: If you don't succeed in a step you can use the result as a black box for the next step.

- (a) Assume you have a cut of G with size $k \ge \lambda$. Show that the probability that the same cut in G' has size strictly smaller than $\frac{k}{2}(1-\varepsilon)$ is at most $e^{-\frac{\varepsilon^2 k}{4}}$. (2 Points)
- (b) Let $k \ge \lambda$ be fixed. Show that the probability that at least one cut of G with size k becomes a cut of size *strictly smaller* than $\frac{k}{2}(1-\varepsilon)$ in G' is at most $e^{-\frac{\varepsilon^2 k}{8}}$.

Hint: You can use that for every $\alpha \geq 1$, the number of cuts of size at most $\alpha\lambda$ is at most $n^{2\alpha}$. (3 Points)

(5 Points)

(9 Points)

¹The connectivity of a graph is the size of the smallest cut $(S, V \setminus S)$ in G.

(c) Show that for large n the probability that at least one cut of G with any size $k \ge \lambda$ becomes a cut of size *strictly smaller* than $\frac{k}{2}(1-\varepsilon)$ in G', is at most $\frac{1}{n}$.

Hint: Use another union bound.

(4 Points)