)

Chapter 10
Parallel Algorithms

Algorithm Theory

Fabian Kuhn

UNI

FREIBURG

Sequential Algorithms

UNI
|

FREIBURG

Classical Algorithm Design:
* One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

* Basic standard model
e Unit cost basic operations
* Unit cost access to all memory cells

Sequential Algorithm / Program:

* Sequence of operations
(executed one after the other)

Algorithm Theory Fabian Kuhn 2

Parallel and Distributed Algorithms

UNI
|

FREIBURG

Today’s computers/systems are not sequential:

* Even cell phones have several cores

* Future systems will be highly parallel on many levels
* This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

* Exploit parallelism to speed up computations

* Shared resources such as memory, bandwidth, ...
* Increase reliability by adding redundancy

* Solve tasks in inherently decentralized environments

Algorithm Theory Fabian Kuhn

Parallel and Distributed Systems

* Many different forms

* Processors/computers/machines/... communicate and share
data through

— Shared memory or message passing

 Computation and communication can be

— Synchronous or asynchronous

* Many possible topologies for message passing

 Depending on system, various types of faults

Algorithm Theory Fabian Kuhn

UNI
|

FREIBURG

Challenges

UNI
|

FREIBURG

Algorithmic and theoretical challenges:
* How to parallelize computations

e Scheduling (which machine does what)

* Load balancing

* Fault tolerance

* Coordination / consistency

* Decentralized state

* Asynchrony

* Bounded bandwidth / properties of comm. channels

Algorithm Theory Fabian Kuhn 5

Models

UNI
FREIBURG

* Alarge variety of models, e.g.:

 PRAM (Parallel Random Access Machine)
— Classical model for parallel computations

* Shared Memory

— Classical model to study coordination / agreement problems,
distributed data structures, ...

 Message Passing (fully connected topology)
— Closely related to shared memory models

* Message Passing in Networks

— Decentralized computations, large parallel machines, comes in various
flavors...

 Computations in large clusters of powerful individual
machines: Massively Parallel Computations (MPC)

Algorithm Theory Fabian Kuhn 6

PRAM

UNI
|

FREIBURG

 Parallel version of RAM model
* p processors, shared random access memory

* Basic operations / access to shared memory cost 1

* Processor operations are synchronized

* Focus on parallelizing computation rather than cost of
communication, locality, faults, asynchrony, ...

Algorithm Theory Fabian Kuhn 7

Other Parallel Models

UNI
|

FREIBURG

 Message passing: Fully connected network, local memory and
information exchange using messages

* Dynamic Multithreaded Algorithms: Simple parallel
programming paradigm
— E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

FIB(n) v
: -
1 if n <2 N
2 then return n ‘
3 x < spawn FIB(n — 1) ‘ ‘
4 y « spawn FIB(n — 2) ‘\‘
> sype ALGORITHMS
6 return (z + y)

Algorithm Theory Fabian Kuhn 8

Parallel Computations

UNI

FREIBURG

Sequential Computation:
e Sequence of operations .

(<

Parallel Computation:

Directed Acyclic Graph (DAG)

Algorithm Theory Fabian Kuhn

UNI
FREIBURG

Parallel Computations

T ,,: time to perform comp. with p procs

S—
————

* T;:work (total # operations)

— Time when doing the
computation sequentially

e T.: critical path / span

— Time when parallelizing as
much as possible

e Lower Bounds:

Algorithm Theory Fabian Kuhn

Parallel Computations :

UNI
FREIBURG

T ,,: time to perform comp. with p procs

e Lower Bounds:

Iy
Tp = —, Tp > To
p
. I
e Parallelism: —
Teo
— maximum possible speed-up

* Linear Speed-up:

2 O(p)
I To,=>5

Algorithm Theory Fabian Kuhn 11

UNI

Scheduling

* How to assign operations to processors?

* Generally an online problem

— When scheduling some jobs/operations, we do not know how the
computation evolves over time

Greedy Scheduling:

* Order jobs/operations as they would be scheduled optimally
with oo processors (topological sort of DAG)

— Easy to determine: With oo processors, one always schedules all
jobs/ops that can be scheduled

* Always schedule as many jobs/ops as possible

e Schedule jobs/ops in the same order as with oo processors
— i.e., jobs that become available earlier have priority

Algorithm Theory Fabian Kuhn 12

FREIBURG

Brent’s Theorem

UNI

FREIBURG

Brent’s Theorem: On p processors, a parallel computation can be

performed in time

Proof:
* Greedy scheduling achieves this...
* Hoperations scheduled with oo processors in round i: x;

Time with p processors:

[X1] X1 p— 1

. X1\ 0OpPS <—4+— <
Round 1 [) Ps , /] » » »

"%L% X, X -1
Round 2: X2 Ops / Sl P

. A p p p

¥ Xi Xi P — 1
Round i: | X; ops] [ﬂ < AT

Algorithm Theory Fabian Kuhn == —

13

UNI
|

FREIBURG

Brent’s Theorem

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Proof:

* Greedy scheduling achieves this...

* #Hoperations scheduled with oo processors in round i: x;

* Time t; to schedule the x; ops of round i with p processors:

e

* Overall time with p processors:

Teo
x 1 1 —1 T;—Ty
p) op &2 p p —
q{\r —_— S

Algorithm Theory Fabian Kuhn =T\ 14

Brent’s Theorem

UNI

Brent’s Theorem: On p processors, a parallel computation can be
performed in time

Corollary: Greedy is a 2-approximation algorithm for scheduling.

Opt. complexity with p processors : T,

—
T1]
Ty >— "
— P L r9<iT,<2T;
Tr>T, i

Corollary: As long as the number of processors p = O(T; /Tw), it is
possible to achieve a linear speed-up. = B

Algorithm Theory Fabian Kuhn 15

FREIBURG

UNI
FREIBURG

PRAM

Back to the PRAM:
* Shared random access memory, synchronous computation steps

e The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

* Concurrent memory access by multiple processors is not allowed

* |If two or more processors try to read from or write to the same
memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):
* Reading the same memory cell concurrently is OK

 Two concurrent writes to the same cell lead to unspecified
behavior
* This is the first variant that was considered (already in the 70s)

Algorithm Theory Fabian Kuhn 16

PRAM

UNI

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):
e Concurrent reads and writes are both OK

e Behavior of concurrent writes has to specified
— Weak CRCW: concurrent write only OK if all processors write 0
— Common-mode CRCW: all processors need to write the same value
— Arbitrary-winner CRCW: adversary picks one of the values
— Priority CRCW: value of processor with highest ID is written

— Strong CRCW: largest (or smallest) value is written
.—%

* The given models are ordered in strength:

weak < common-mode < arbitrary-winner < priority < strong

Algorithm Theory Fabian Kuhn 17

FREIBURG

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢, using p
proc. on a strong CRCW machine, can also be performed in time O(tlogp)
using p processors on an EREW machine.

* Each (parallel) CRCW step can be simulated by O(logp) EREW

. Fgr each register, add O(p) additional register&l, logically connected to a
binary tree -

* Reading the register: mark from leaves to root, then copy value from register

on marked paths
? 5 ¢ +

Algorithm Theory Fabian Kuhn 18

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time t, using p
proc. on a strong CRCW machine, can also be performed in time O(tlogp)
using p processors on an EREW machine.

e Each (parallel) CRCW step can be simulated by O(log p) EREW

* For each register, add O(p) additional registered, logically connected to a
binary tree

* Writing the register: start at leaves and propagate the winning value towards
the root

} L
Q O ®» Q0 @ OREN®

QO & &)

©)

Algorithm Theory Fabian Kuhn 19

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A parallel computation that can be performed in time ¢,
using p proc. on a strong CRCW machine, can also be performed in
time O(t logp) using p processors on an EREW machine.

e Each (parallel) step on the CRCW machine can be simulated by
O (logp) steps on an EREW machine

Theorem: A parallel computation that can be performed in time ¢,
using p probabilistic processors on a strong CRCW machine, can also
be performed in expected time O(tlogp) using O(p/logp)
processors on an arbitrary-winner CRCJV_machine.

e The same simulation turns out more efficient in this case

Algorithm Theory Fabian Kuhn 20

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in time

0 (t) using O(p*?) processors on a weak CRCW machine

Proof:
e Strong: largest value wins, weak: only concurrently writing 0 is OK

* Processes:
— Both machines use processes 1, ..., p
— Weak machine: additional procs q;; for every pair (i,/), 1 S i <j <p
e Additional memory cells of weak CRCW machine:
Vi € {1, ...,p} : flag f;, value v;, address a; (all initialized to 0)
* |f process i wants to write value x to memory cell c:
setf; =1, v;:=x, a; '=c¢

7 —_ ———
Algorithm Theory Fabian Kuhn 21

Some Relations Between PRAM Models _

UNI
FREIBURG

Theorem: A computation that can be performed in time t, using p
processors on a strong CRCW machine, can also be performed in time

O(t) using O(p?) processors on a weak CRCW machine

Proof:
e Strong: largest value wins, weak: only concurrently writing 0 is OK

* |f process i wants to write value x to memory cell c:
setf; =1, v;=x, a; '=c¢

Vi,] : reads cells f;, fj, v, Vj,a;,a; (concurrent reads are OK)
— — — ——
if fi = fj =1 Aa; = aj then (i and j write to same addr.)
if v; = vj then f; :==0 (set flag to O if value loses)
F= else 71-':= 0 (concurrent writes of 0 OK)

Algorithm Theory Fabian Kuhn 22

Computing the Maximum

UNI

FREIBURG

Given: n values
Goal: find the maximum value

Observation: The maximum can be computed in parallel by using a

binary tree (even on an EREW PRAM).

Work T; = O/(rQ
Depth T, = 0(logn)

———
—

Time T,=0 (g + logn)

Linear speed-up (T, = O(T; / p)) aslongasp = O(n/logn)

Algorithm Theory Fabian Kuhn

23

Computing the Maximum

UNI
FREIBURG

Observation: On a strong CRCW machine, the maximum of an
values can be computed in O (1) time using n processors

* Each value is concurrently written to the same memory cell

Lemma: On a weak CRCW machine, the maximum of n integers

between 1Mcan be computed in time 0 (1) using 0(n) proc.

Proof:
* We have \/n memory cells f, ... ,f\/ﬁ for the possible values

* Initialize all f; =1

* Forthe nvalues x4, ..., x,;, processor j sets ij =0

—
— Since only zeroes are written, concurrent writes are OK

* Now, f; = 0iff value i occurs at least once =
 Strong CRCW machine: max. value in time 0(1) w. 0(y/n) proc.
e Weak CRCW machine: time 0(1) using O(n) proc. (prev. lemma)

Algorithm Theory Fabian Kuhn F)_ 24

Computing the Maximum

UNI
|

FREIBURG

Theorem: If each value can be represented using 0(10§ n) bits, the
maximum of n (integer) values can be computed in time O(1) using
O (n) processors on a weak CRCW machine.

Ry ~———

Proof: @é‘@m_ l, 1

Ty

highest order bits\'%

log, n

* First look at

* The maximum value also has the maximum among those bits

* There are only v/n possibilities for these bits

log, n

* max. of highest order bits can be computed in O(1) time

log, n

* For those with largest highest order bits, continue with

log, n

next block of bits, ...

Algorithm Theory Fabian Kuhn 25

Prefix Sums

UNI
|

FREIBURG

* The following works for any associative binary operator @:

associativity: (a®b)Dc = aP(bDBc)

All-Prefix-Sums: Given a sequence of n values ay, ..., ap, the all-
prefix-sums operation w.r.t. @ returns the sequence of prefix sums:

S$1,S82, ..., Sp = A4, al@az, al@az@(%& ey a1$ @an

* Can be computed efficiently in parallel and turns out to be an
important building block for designing parallel algorithms

Example: Operator: +, input: a4, ..., a3 = 3,1,7,0,4,1,6, 3
= -

S1s -, 58 =3/L‘) u/\\/ \9/ \£/2212§

Algorithm Theory Fabian Kuhn 26

Computing the Sum

UNI
FREIBURG

* Let'sfirstlookats, = a;Da,D - Da,

* Parallelize using a binary tree:

Work T; = 0(n)

Depth T, = O(logn)

Time T,=0(=+logn
(p procs) p (p __g_)

—

Linear speed-up (T, = O(T; / p)) aslongasp = O(n/logn)

Algorithm Theory Fabian Kuhn 27

UNI

Computing the Sum

FREIBURG

Lemma: The sum s, = a;®@a,® --- Da, can be computed in
time O(logn) on an EREW PRAM. The total number of
operations (total work) is O(n).

Proof:
* Use a binary tree of height O(logn)
* Tree has 0(n) nodes (each computes one sum of two values)

Corollary: The sum s,, can be computed in time O (logn) using
O(n/logn) processors on an EREW PRAM.

Proof:
* Follows from Brent’s theorem (T; = O0(n), T, = 0(logn))

Algorithm Theory Fabian Kuhn 28

Getting The Prefix Sums

UNI
|

FREIBURG

* |Instead of computing the sequence s4, S5, ..., S, let’s compute

Ty Ty = 0,584,852, ..., Sp—1 (Q: neutral element w.r.t. @)

—

Ty = 0,a1,a:0a,, ...,a:0 - ©ap—4

* Together with s,,, this gives all prefix sums

* Prefixsumr; =5s;_4 =a;D---Da;_1:

©)
©) @
©) © ©

=

©

@ (& @ (o @ (& ON©

@ 0o @ @ W0 @ @ W

Algorithm Theory Fabian Kuhn

) @y @

T14
(313) 29

Getting The Prefix Sums

UNI
|

FREIBURG

Claim: The prefixsumr; = a;® --- Da;_4 is the sum of all the
leaves in the left sub-tree of ancestor u of the leaf v containing a;

such that v is in the right sub-tree of u.

© ®) © 10
@\ /@ @ @ @©

566665‘3 S /6

Algorithm Theory Fabian Kuhn 30

UNI

Computing The Prefix Sums

FREIBURG

For each node v of the binary tree, define r(v) as follows:

~

. r(v) is the sum of the values a; at the leaves in all the left sub-
trees of ancestors u of v such that v is in the right sub-tree of u.

e

For a leaf node v holding value a;: r(v) = r; = s;_1

For the root node: r(root) = 0
\—

For all other nodes v: v is the right child of u:

)V is the left child of u:

r(v) =r()

rv) =r(u)+S

a2 S

(S: sum of values in
sub-tree of w)

Algorithm Theory Fabian Kuhn 31

Computing The Prefix Sums :

UNI
FREIBURG

* leaf node v holding value a;: r(v) =r; = s;_4 O vy
* root node: r(root) =0 - X @/ \0

. . . v Ve
* Node v is the left child of u: r(v) = r(u) ﬂ\'o(““"\ (=i
* Node v is the right child of u: r(v) = r(u) +.§ +X

'3
— Where: S = sum of values in left sub-tree of u /T\

Algorithm to compute values r(v): ~

1. Compute sum of values in each sub-tree (bottom-up)
— Can be done in parallel time 0 (logn) with O(n) total work

2. Compute values r(v) top-down from root to leaves:

— To compute the value r(v), only r(u) of the parent u and the sum of the
left sibling (if v is a right child) are needed

— Can be done in parallel time O (logn) with O(n) total work

Algorithm Theory Fabian Kuhn 32

Example

UNI
FREIBURG

1. Compute sums of all sub-trees

— Bottom-up (level-wise in parallel, starting at the leaves)

2. Compute values r(v)
— Top-down (starting at the root)

&

0 10 21
(10 (1Y) (13)
0 11 10 19 21 30

RN OO O

S @

34

18)

34 43

-

0

3 11 11 10 16 19 21 21 29 30 31
14 9 ¢

Algorithm Theory Fabian Kuhn

34 38 43 50

33

Computing Prefix Sums

UNI
|

FREIBURG

Theorem: Given a sequence a4, ..., a, of n values, all prefix sums
S; = a1 - Da; (for1 < i < n)can be computed in time O(logn)

using O(n/logn) processors on an EREW PRAM.
——

Proof:

 Computing the sums of all sub-trees can be done in parallel in
time O (logn) using O(n) total operations.

* The same is true for the top-down step to compute the r(v)

* The theorem then follows from Brent’s theorem:

T
T;=0(1), Te=0(ogn) = T,0<Too+?1

Remark: This can be adapted to other parallel models and to
different ways of storing the value (e.g., array or list)

Algorithm Theory Fabian Kuhn 34

Parallel Quicksort

UNI

FREIBURG

* Key challenge: parallelize partition

pivot

5(14/18 8 |19(21| 3 |1 |25{17(11| 4 |20|10|26| 2

13

23

16

partition

5/14/8 3|1 (11| 4 (10| 2 |9 |13|16(18|19|2125

17

20

26

23

 How can we do this in parallel?
* For now, let’s just care about the values < pivot
 What are their new positions

Algorithm Theory Fabian Kuhn

35

Using Prefix Sums

UNI
|

FREIBURG

* Goal: Determine positions of values < pivot after partition pivot

/

14/18| 8 |19|21| 3 | 1 |125/17|11| 4 |20|10|26| 2 | 9 |13|23|16

1/0(1(0(0 1/,0/0(12(2/0(1/0(1(1(1(0|1

5
I
1
\ @ prefix sums
1
5

)
2(2|3|3|3|4|5|5|5|6|7|7|8|8|9|10/11|11|12

\‘/ @ partition

14/8|3|111|4 (10| 2 | 9 |113|16(18|19(21|25|17|20(26|23

Algorithm Theory Fabian Kuhn 36

Partition Using Prefix Sums

UNI
FREIBURG

* The positions of the entries > pivot can be determined in the
same way

e Prefixsums:T; = 0(n), T, = 0(logn)
* Remaining computations: T; = 0(n), T, =0(1)

 Overall: T, = 0(n), T, = 0(logn)

Lemma: The partitioning of quicksort can be carried out in

parallel in time O(logn) using O () processors.

logn
Proof:

* By Brent’s theorem: T, < +T

Algorithm Theory Fabian Kuhn 37

Applying to Quicksort

UNI
FREIBURG

Theorem: On an EREW PRAM, using p processors, randomized
quicksort can be executed in time T, (in expectation and with
high probability), where

nlogn
T, = 0(5 +10g2n).
p
Proof:
* Work T; = O(nlogn)

e Depth/Span T, = 0(log?n)

Remark:

* We get optimal (linear) speed-up w.r.t. to the sequential
algorithm for all p = O(n/logn).

Algorithm Theory Fabian Kuhn 38

Other Applications of Prefix Sums

UNI
|

FREIBURG

* Prefix sums are a very powerful primitive to design parallel
algorithms.
— Particularly also by using other operators than “+”

Example Applications:

* Lexical comparison of strings
e Add multi-precision numbers
e Evaluate polynomials

* Solve recurrences

* Radix sort / quick sort

e Search for regular expressions

* Implement some tree operations

Algorithm Theory Fabian Kuhn 39

