"nr Algorithm Theory

Chapter 5
Data Structures

Part ll:
Union Find: Disjoint-Set Forests

Fabian Kuhn

UNI
I

FREIBURG

Disjoint-Set Forests

UNI

FREIBURG

D @ @
OO
(b)

* Represent each set by a tree

* Representative of a set is the root of the tree

Algorithm Theory Fabian Kuhn

@

UNI
f

FREIBURG

Disjoint-Set Forests

make_set(x): create new one-node tree @

o

find(x): follow parent point to root 0)
(parent pointer to itself)

union(x, y): attach tree of x to tree of y

Tof vy

Algorithm Theory Fabian Kuhn 3

Bad Sequence

UNI

FREIBURG

Bad sequence leads to tree(s) of depth O(n)

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(x, x5), union(xy, x3), ..., union(xy, x,,)

Algorithm Theory Fabian Kuhn

Union-By-Rank Heuristic

UNI

FREIBURG

 We could use the same union-by-size idea as before and always
attach the smaller tree to the larger tree.

* Instead, we use an alternative, slightly different idea

Union of sets $; and $5:

* Each tree node v has a rank r(v), initially, after make_set: r(v) = 0
* Union of two trees (for sets S; and S,) with roots v; and v,

o Ifr(vy) # r(v,), attach root of smaller rank to root of larger rank

* Otherwise, attach v, as to v4, increment rank (v,) of root v,

Remark: The rank r(v) is the height of the subtree rooted at v
 Initially, v is a one-node tree of height 0 and r(v) = 0

* Union operation:
— If r(vy) # r(v,), height of all subtrees stays the same, ranks do not change.
— If r(vy) = r(vy), height of subtree of v; and the rank r(v;) grow by 1

Algorithm Theory Fabian Kuhn 5

UNI
f

FREIBURG

Union-By-Rank Heuristic

Lemma: The subtree rooted at a node v of rank r(v) has
at least 2" nodes.

Proof:

* Anew nodeisin atree of size 1 and has rank 0. @rank -0
e Afterwards, the rank can only change in a union operation

— Ifanodeu getsvasanewchildandr(u) =r(v) =r

— Rank of root increases by 1, new tree size > 2 - 2" = 27*1

il rank = 2 rank =2

© u > O

Algorithm Theory Fabian Kuhn

Union-By-Rank Heuristic

UNI
f

FREIBURG

Lemma: Let u = uq, U,, ..., U, = v be the path from a node u to the
root v in the tree containing node u. We then have

r(uy) <r(uy) < - <r(ug).
Proof:

* We show that for any two nodes x and y such that y is the parent
of x, we always have r(x) < r(y).

* Node y becomes the parent of x when the tree of root x is
attached to the tree of root y in a union operation.

— Either, we then have r(y) > r(x)
— Or, we have r(y) = r(x). Then, the rank of y is increased by 1
— Afterwards, only the rank of y can change (increase)

Corollary 1: The subtree of a node v has height at most r(v).

Corollary 2: All trees have height O(logn).

Algorithm Theory Fabian Kuhn 7

UNI

Union-Find Algorithms

FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Union-By-Size:

* make_set: worst-case cost 0(1)

e find : worst-case cost 0(1)

* union :amortized worst-case cost O (logn)

Disjoint-Set Forest with Union-By-Rank (or Union-By-Size):
* make_set: worst-case cost O(1)

e find : worst-case cost O(logn)

 union :worst-case cost O(logn)

Can we make this faster?

Algorithm Theory Fabian Kuhn 8

Path Compression During Find Operation _

UNI
FREIBURG

1. ifa # a.parent then

2. a.parent := find(a.parent)
3. return a.parent

Algorithm Theory Fabian Kuhn 9

Union-By-Rank and Path Compression

UNI

FREIBURG

Theorem: Using the combined union-by-rank and path
compression heuristic, the running time of m union-find
operations on n elements (at most n make_set-operations) is

O(m - a(n)),
where a(n) is the inverse of the Ackermann function.

* a(n): extremely slowly growing function.
* For all practical purposes a(n) < 4

— E.g.,as long as n is less than the number of atoms in the universe...

We will show the following slightly weaker statement:
* The running time of m operations is at most O(m - log* n)
* log* nis a function that grows almost as slowly as a(n).

Algorithm Theory Fabian Kuhn 10

Union-By-Rank and Path Compression

UNI

FREIBURG

The rank of a node v is still defined in the same way:
* r(v)isinitialized to 0

e every time a node u is attached as the child of v in a union
operation, if r(u) = r(v), r(v) is increased by 1.
— The rank is now just an upper bound on the height of a tree.

The two lemmas from before are still true.

Lemma: The subtree rooted at node v has > 27®) nodes.

* The same argument as before works.

Lemma: Let u = uq, U,, ..., U, = v be the path from a node u to
the root v in the tree containing node u. We then have

r(uy) <r(uy) < - <r(ug).

* Node y can become parent of x during a path compression.
* Butthen, y was an ancestor of x and we also have r(y) > r(x).

Algorithm Theory Fabian Kuhn

11

Simple Observations

UNI
FREIBURG

Path compression in union operations:

* We will assume that a union operation consists of two find
operations and the constant-time operation for merging the trees.

— We can then concentrate on the cost and the effect of find operations.

Rank:

 The rank of a node can only change as long as the node is the root
of some tree. As soon as the node has a parent, the rank is fixed.

* The number of nodes of rank r is at most n/2"
— Each such node has a subtree of size > 2" with nodes of smaller rank.

Find operation:

* Consider a node u with parent v and assume that the edge {u, v} is
traversed in a find operation.
— If vis not the root of the tree, u gets a new parent w with r(w) > r(v)

— Node v will not be the parent of u in the future
Algorithm Theory Fabian Kuhn 12

Node Buckets

UNI

FREIBURG

* We place all the non-root nodes in some bucket
— As soon as a hode is in a bucket, the rank of the node is fixed

Buckets:

rank O

rank 1

ranks 2,3

ranks 4, ..., 15

B buckets

ranks R, ..., 28 — 1

ranks 2R, ... 22% — 1

Each bucket contains all non-root
nodes with ranks between
r and 2" — 1 for some integer r = 0.

Maximum number of nodes in bucket:
 Nodes withranki < n/2'

* Nodes with rankin [r, 2" — 1]:

¢ n 2n
Z?zz_r
i=r

Algorithm Theory

Fabian Kuhn

13

Cost of Find Operations

UNI
f

FREIBURG

Total cost of all find operations = O (#traversed edges) =
1. Number of edges to a root node

e« < 0(m) (1 per find operation)
2. Number of edges to a non-root node in a different bucket
e« <0O(m-B) (< B per find operation)

3. Number of edges to a non-root node in same bucket

 Let’s count these kind of edges for each node v in some bucket with
ranks between rand 2" — 1

* Node v sees every non-root parent w at most once, and when changing
the parent, the new parent has a higher rank.

e The number of such traversed edges for each node is therefore at most
the number of ranks in the bucket = < 2"

* Number of nodes in bucket is < 2%/,
* At most 2n such edges per bucket = < O(n - B) cost overall

Overall find cost: O(m - B) What is B?

Algorithm Theory Fabian Kuhn 14

The Number of Buckets

UNI
FREIBURG

Definition:
log* (n) = 0, ifn<1
06 VU =01 + log*(log, n), otherwise
* log® nisthe number of logarithms we have to take to get a
value at most 1.

* log® n grows extremely slowly:
— log*(4) = 2,log*(16) = 3,log*(65536) = 4, log*(26°°36) = 5

Claim: The number of buckets is B = O(log™* n).

 Buckets contain ranks
19,270 — 1], [ry, 2" — 1], [1p, 272 — 1], ..., with 1y = 271

* Therefore:
ro = log(r;) = loglog(r,) = logloglog(r;) = log ...1log(rg)

Algorithm Theory Fabian Kuhn 15

Union-By-Rank and Path Compression

UNI
FREIBURG

Theorem: Using the combined union-by-rank and path
compression heuristic, the running time of m union-find
operations on n elements (at most n make_set-operations) is

O(m - log* n).

* Cost of make-set and union is O(n)

— When ignoring the find operations that are contained in union
operations.

* Cost of find operationsisO(m - B) = O(m -log* n)

— Including the find operations that are contained in union operations

Algorithm Theory Fabian Kuhn 16

