
Algorithm Theory

Chapter 5

Data Structures

Part II:
Union Find: Disjoint-Set Forests

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

• Represent each set by a tree

• Representative of a set is the root of the tree

𝑐

Disjoint-Set Forests

ℎ 𝑒

𝑏

𝑓

𝑑

𝑔

𝑟

𝑠

𝑖 𝑥

𝑦

𝑢

𝑣

𝑎



Algorithm Theory Fabian Kuhn 3

Disjoint-Set Forests

𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝐱): create new one-node tree

𝐟𝐢𝐧𝐝(𝒙): follow parent point to root
(parent pointer to itself)

𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚): attach tree of 𝑥 to tree of 𝑦

𝑥

𝑟

𝑠

𝑖 𝒙

𝑦

𝑢

𝑣

𝑓

𝑥

𝑐

𝑦 𝑒

𝑏

∪ 𝑓

𝑥

𝑐

𝑦 𝑒

𝑏



Algorithm Theory Fabian Kuhn 4

Bad Sequence

Bad sequence leads to tree(s) of depth Θ(𝑛)

• make_set 𝑥1 , make_set 𝑥2 , … ,make_set(𝑥𝑛),
union 𝑥1, 𝑥2 , union 𝑥1, 𝑥3 , … , union 𝑥1, 𝑥𝑛

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑥4



Algorithm Theory Fabian Kuhn 5

Union-By-Rank Heuristic

• We could use the same union-by-size idea as before and always 
attach the smaller tree to the larger tree.

• Instead, we use an alternative, slightly different idea

Union of sets 𝑺𝟏 and 𝑺𝟐:

• Each tree node 𝑣 has a rank 𝑟(𝑣), initially, after make_set: 𝑟 𝑣 = 0

• Union of two trees (for sets 𝑆1 and 𝑆2) with roots 𝑣1 and 𝑣2
• If 𝑟 𝑣1 ≠ 𝑟 𝑣2 , attach root of smaller rank to root of larger rank

• Otherwise, attach 𝑣2 as to 𝑣1, increment rank 𝑟 𝑣1 of root 𝑣1

Remark: The rank 𝑟 𝑣 is the height of the subtree rooted at 𝑣

• Initially, 𝑣 is a one-node tree of height 0 and 𝑟 𝑣 = 0

• Union operation: 
– If 𝑟 𝑣1 ≠ 𝑟 𝑣2 , height of all subtrees stays the same, ranks do not change.

– If 𝑟 𝑣1 = 𝑟(𝑣2), height of subtree of 𝑣1 and the rank 𝑟 𝑣1 grow by 1



Algorithm Theory Fabian Kuhn 6

Union-By-Rank Heuristic

Lemma: The subtree rooted at a node 𝑣 of rank 𝑟 𝑣 has 

at least 2𝑟 𝑣 nodes.

Proof:

• A new node is in a tree of size 1 and has rank 0.

• Afterwards, the rank can only change in a union operation

– If a node 𝑢 gets 𝑣 as a new child and 𝑟 𝑢 = 𝑟 𝑣 = 𝑟

– Rank of root increases by 1, new tree size ≥ 2 ⋅ 2𝑟 = 2𝑟+1

𝑎

𝑐

𝑦 𝑒

𝑏

∪

𝑐

𝑦 𝑒

𝑏

𝑎

𝑐 𝑓

𝑔

𝐫𝐚𝐧𝐤 = 𝟎

𝑎

𝑐 𝑓

𝑔

𝐫𝐚𝐧𝐤 = 𝟐 𝐫𝐚𝐧𝐤 = 𝟐
𝐫𝐚𝐧𝐤 = 𝟑𝒖𝒗

𝒗

𝒖



Algorithm Theory Fabian Kuhn 7

Union-By-Rank Heuristic

Lemma: Let 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑘 = 𝑣 be the path from a node 𝑢 to the 
root 𝑣 in the tree containing node 𝑢. We then have

𝑟 𝑢1 < 𝑟 𝑢2 < ⋯ < 𝑟 𝑢𝑘 .

Proof:

• We show that for any two nodes 𝑥 and 𝑦 such that 𝑦 is the parent 
of 𝑥, we always have 𝑟 𝑥 < 𝑟 𝑦 .

• Node 𝑦 becomes the parent of 𝑥 when the tree of root 𝑥 is 
attached to the tree of root 𝑦 in a union operation.

– Either, we then have 𝑟 𝑦 > 𝑟(𝑥)

– Or, we have 𝑟 𝑦 = 𝑟 𝑥 . Then, the rank of 𝑦 is increased by 1

– Afterwards, only the rank of 𝑦 can change (increase)

Corollary 1: The subtree of a node 𝑣 has height at most 𝑟 𝑣 .

Corollary 2: All trees have height 𝑂 log 𝑛 .



Algorithm Theory Fabian Kuhn 8

Union-Find Algorithms

Recall: 𝑚 operations, 𝑛 of the operations are make_set-operations

Linked List with Union-By-Size:

• make_set: worst-case cost 𝑂 1

• find : worst-case cost 𝑂(1)

• union : amortized worst-case cost 𝑂(log 𝑛)

Disjoint-Set Forest with Union-By-Rank (or Union-By-Size):

• make_set: worst-case cost 𝑂 1

• find : worst-case cost 𝑂(log 𝑛)

• union : worst-case cost 𝑂(log 𝑛)

Can we make this faster?



Algorithm Theory Fabian Kuhn 9

Path Compression During Find Operation

𝐟𝐢𝐧𝐝(𝒂):

1. if 𝑎 ≠ 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡 then

2. 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ find 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡

3. return 𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡

𝑓

𝑒

𝑑

𝑐

𝑏

𝑎

𝑓

𝑒

𝑑

𝑐

𝑏

𝑎



Algorithm Theory Fabian Kuhn 10

Union-By-Rank and Path Compression

Theorem: Using the combined union-by-rank and path 
compression heuristic, the running time of 𝑚 union-find 
operations on 𝑛 elements (at most 𝑛 make_set-operations) is

𝚯 𝒎 ⋅ 𝜶 𝒏 ,

where 𝛼 𝑛 is the inverse of the Ackermann function.

• 𝛼 𝑛 : extremely slowly growing function.

• For all practical purposes 𝛼 𝑛 ≤ 4
– E.g., as long as 𝑛 is less than the number of atoms in the universe…

We will show the following slightly weaker statement:

• The running time of 𝑚 operations is at most 𝑂 𝑚 ⋅ log∗ 𝑛

• log∗ 𝑛 is a function that grows almost as slowly as 𝛼 𝑛 .



Algorithm Theory Fabian Kuhn 11

Union-By-Rank and Path Compression

The rank of a node 𝒗 is still defined in the same way:

• 𝑟 𝑣 is initialized to 0

• every time a node 𝑢 is attached as the child of 𝑣 in a union 
operation, if 𝑟 𝑢 = 𝑟 𝑣 , 𝑟(𝑣) is increased by 1.
– The rank is now just an upper bound on the height of a tree.

The two lemmas from before are still true.

Lemma: The subtree rooted at node 𝑣 has ≥ 2𝑟 𝑣 nodes.

• The same argument as before works.

Lemma: Let 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑘 = 𝑣 be the path from a node 𝑢 to 
the root 𝑣 in the tree containing node 𝑢. We then have

𝑟 𝑢1 < 𝑟 𝑢2 < ⋯ < 𝑟 𝑢𝑘 .

• Node 𝑦 can become parent of 𝑥 during a path compression.

• But then, 𝑦 was an ancestor of 𝑥 and we also have 𝑟 𝑦 > 𝑟 𝑥 .



Algorithm Theory Fabian Kuhn 12

Simple Observations

Path compression in union operations:

• We will assume that a union operation consists of two find 
operations and the constant-time operation for merging the trees.
– We can then concentrate on the cost and the effect of find operations.

Rank:

• The rank of a node can only change as long as the node is the root 
of some tree. As soon as the node has a parent, the rank is fixed.

• The number of nodes of rank 𝑟 is at most Τ𝑛 2𝑟

– Each such node has a subtree of size ≥ 2𝑟 with nodes of smaller rank.

Find operation:

• Consider a node 𝑢 with parent 𝑣 and assume that the edge 𝑢, 𝑣 is 
traversed in a find operation.
– If 𝑣 is not the root of the tree, 𝑢 gets a new parent 𝑤 with 𝑟 𝑤 > 𝑟(𝑣)

– Node 𝑣 will not be the parent of 𝑢 in the future



Algorithm Theory Fabian Kuhn 13

Node Buckets

• We place all the non-root nodes in some bucket
– As soon as a node is in a bucket, the rank of the node is fixed

Buckets:

rank 0

rank 1

ranks 2, 3

ranks 4, … , 15

ranks 𝑅,… , 2𝑅 − 1

ranks 2𝑅 , … , 22
𝑅
− 1

𝐵
b

u
ck

et
s

Each bucket contains all non-root 
nodes with ranks between
𝑟 and 2𝑟 − 1 for some integer 𝑟 ≥ 0.

Maximum number of nodes in bucket:
• Nodes with rank 𝑖 ≤ Τ𝑛 2𝑖

• Nodes with rank in 𝑟, 2𝑟 − 1 :

෍

𝑖=𝑟

∞
𝑛

2𝑖
=
2𝑛

2𝑟

⋮



Algorithm Theory Fabian Kuhn 14

Cost of Find Operations

Total cost of all find operations = 𝑶 #traversed edges =

1. Number of edges to a root node
• ≤ 𝑂 𝑚 (1 per find operation)

2. Number of edges to a non-root node in a different bucket
• ≤ 𝑂(𝑚 ⋅ 𝐵) (≤ 𝐵 per find operation)

3. Number of edges to a non-root node in same bucket
• Let’s count these kind of edges for each node 𝑣 in some bucket with 

ranks between 𝑟 and 2𝑟 − 1

• Node 𝑣 sees every non-root parent 𝑤 at most once, and when changing 
the parent, the new parent has a higher rank.

• The number of such traversed edges for each node is therefore at most 
the number of ranks in the bucket ⟹< 2𝑟

• Number of nodes in bucket is ≤ Τ2𝑛
2𝑟

• At most 2𝑛 such edges per bucket ⟹≤ 𝑂(𝑛 ⋅ 𝐵) cost overall

Overall find cost: 𝑶 𝒎 ⋅ 𝑩 What is 𝐵?



Algorithm Theory Fabian Kuhn 15

The Number of Buckets

Definition:

log∗ 𝑛 ≔ ቊ
0, if 𝑛 ≤ 1
1 + log∗ log2 𝑛 , otherwise

• log∗ 𝑛 is the number of logarithms we have to take to get a 
value at most 1.

• log∗ 𝑛 grows extremely slowly:

– log∗(4) = 2, log∗(16) = 3, log∗ 65536 = 4, log∗ 265536 = 5

Claim: The number of buckets is 𝐵 = 𝑂 log∗ 𝑛 .

• Buckets contain ranks
𝑟0, 2

𝑟0 − 1 , 𝑟1, 2
𝑟1 − 1 , 𝑟2, 2

𝑟2 − 1 ,… ,with 𝑟𝑖+1 = 2𝑟𝑖

• Therefore:
𝑟0 = log 𝑟1 = log log 𝑟2 = log log log 𝑟3 = log… log 𝑟𝐵



Algorithm Theory Fabian Kuhn 16

Union-By-Rank and Path Compression

Theorem: Using the combined union-by-rank and path 
compression heuristic, the running time of 𝑚 union-find 
operations on 𝑛 elements (at most 𝑛 make_set-operations) is

𝚯 𝒎 ⋅ 𝐥𝐨𝐠∗ 𝒏 .

• Cost of make-set and union is 𝑂 𝑛
– When ignoring the find operations that are contained in union 

operations.

• Cost of find operations is 𝑂 𝑚 ⋅ 𝐵 = 𝑂 𝑚 ⋅ log∗ 𝑛
– Including the find operations that are contained in union operations


