Algorithm Theory

Chapter 6
Graph Algorithms

Part VI:
Circulation
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Circulations with Demands
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Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

* The circulation problem is a feasibility rather than a maximization
problem
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Circulations with Demands: Formally
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Given: Directed network G = (V/, E) with
* Edge capacitiesc, = Oforalle € E

* Nodedemandsd, € Rforallv eV

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
 Capacity Conditions:Ve € E: 0 < f(e) <c,
« Demand Conditions: Yv € V: fi'(v) — fou(v) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Example
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Condition on Demands
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Claim: If there exists a feasible circulation with demands d,, for

v €V, then
Z d, = 0.

VEV
Proof:

¢ Tpdy =Ty (FW) - W)
* f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D := z —d,= z d,

v:d,<0 v:d,>0
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Reduction to Maximum Flow
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e Add “super-source” s* and “super-sink” t* to network

s” supplies t* siphons
sources flow out
with flow of sinks

 valid circulations © valid s*-t* flow that saturates all red edges.
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Example
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Formally...
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Reduction: Get graph G’ from graph as follows
e Nodesetof G'isV U {s*, t*}

 Edge setis E and edges
— (8%, v) forall v with d,, < 0, capacity of edge is —d,,
— (v, t") forall v with d,, > 0, capacity of edge is d,,

Observations:

 Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

* A feasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

* Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints
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Circulation with Demands
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Theorem: There is a feasible circulation with demands d,,, v € VV
on graph G if and only if there is a flow of value D on G'.

* If all capacities and demands are integers, there is a valid
integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands

d,, v € V if and only if the sum of all demands is zero and for all
cuts (4, B),

z d, < c(A,B).

VEB
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Circulation: Demands and Lower Bounds _
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Given: Directed network G = (V/, E) with
* Edge capacities ¢, > 0 and lower bounds 0 < ¢, < c,fore € E

* Nodedemandsd, € Rforallv eV

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
* Capacity Conditions:Ve € E: £, < f(e) < c,
 Demand Conditions:Yv € V: f(v) — foU"(v) = d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Solution Idea

Define initial circulation fy(e) = £,
Satisfies capacity constraints: Ve € E: ¢, < f,(e) < c,

Define

Ly = @) = @) = Y le= ) L

e intov e out of v

If L, = d,,, demand condition is satisfied at v by f,, otherwise,
we need to superimpose another circulation f; such that

dy = fi"(v) = [P (W) = dy — Ly
Remaining capacity of edge e: c, :=c, — ¥,

We get a circulation problem with new demands d,,, new
capacities c,, and no lower bounds
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Eliminating a Lower Bound: Example
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Lower bound of 2
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Reduce to Problem Without Lower Bounds
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Graph G = (V,E):
* Capacity: Foreachedgee € E: ¥, < f(e) < c,
 Demand: For each node v € V: f1%(v) — foU(v) = d,,

Model lower bounds with supplies & demands:

W—=e=fe )

Flow: ¢,

Create Network G’ (without lower bounds):
 Foreachedgee€E:c, =c, — ¥,
 ForeachnodeveV:d, =d,—L,
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Circulation: Demands and Lower Bounds  _:.
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Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

 Given circulation f'in G', f(e) = f'(e) + £, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

Frw) =) = ) (Lt f@)= ) (@)

eintov e out of v

=L,+(d, — L,) =d,
 Given circulation fin G, f'(e) = f(e) — £, is circulation in G’
— The capacity constraints are satisfied because £, < f(e) < c,
— Demand conditions:

f’i“(v) _f/out(v) — z (f (e) — {e) — z (f (e) — fe)

e intov e out of v
— dv - Lv
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Integrality
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Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:
* Graph G' has only integral capacities and demands

* Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

* The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

* |t also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.
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