
Algorithm Theory

Chapter 7

Randomized Algorithms

Part VI:
Implementing Edge Contractions

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Implementing Edge Contractions

Edge Contraction:

• Given: multigraph with 𝑛 nodes
– assume that set of nodes is {1, … , 𝑛}

• Goal: contract edge 𝑢, 𝑣

Data Structure

• We can use either adjacency lists or an adjacency matrix

• Entry in row 𝑖 and column 𝑗: #edges between nodes 𝑖 and 𝑗

• Example:

𝟏

𝟒

𝟐

𝟓

𝟑
𝐴 =

0 2 0
2 0 1
0 1 0

1 0
1 0
0 1

1 1 0
0 0 1

0 3
3 0

Algorithm Theory Fabian Kuhn 3

Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1

2

4

3

5

7

6

0 2 1 3 1{3,5}

Algorithm Theory Fabian Kuhn 4

Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 35 4 6 7

1 0 1 0 3 0 0

2 1 0 2 0 2 0

35 0 2 0 1 3 1

4 3 0 1 0 0 0

6 0 2 3 0 0 1

7 0 0 1 0 1 0

1

2

4

335

7

6

{3,5} 0 2 1 3 1

Algorithm Theory Fabian Kuhn 5

Contracting an Edge

Claim: Given the adjacency matrix of an 𝑛-node multigraph and
an edge {𝑢, 𝑣}, one can contract the edge 𝑢, 𝑣 in time 𝑂(𝑛).

• Row/column of combined node {𝑢, 𝑣} is sum of rows/columns
of 𝑢 and 𝑣

• Row/column of 𝑢 can be replaced by new row/column of
combined node {𝑢, 𝑣}

• Swap row/column of 𝑣 with last row/column in order to have
the new (𝑛 − 1)-node multigraph as a contiguous
𝑛 − 1 × (𝑛 − 1) submatrix

Algorithm Theory Fabian Kuhn 6

Finding a Random Edge

• We need to contract a uniformly random edge

• How to find a uniformly random edge in a multigraph?
– Finding a random non-zero entry (with the right probability) in an

adjacency matrix costs 𝑂 𝑛2 .

Idea for more efficient algorithm:

• First choose a random node 𝑢
– with probability proportional to the degree (#edges) of 𝑢

• Pick a random edge of 𝑢
– only need to look at one row  time 𝑂 𝑛

Algorithm Theory Fabian Kuhn 7

Choose a Random Array Entry

Problem: Given an array 𝐴 = [𝑎1, … , 𝑎𝑛] with 𝑎𝑖 ≥ 0, choose a random

index 𝑖 with probability proportional to 𝑎𝑖. (assume that 𝑆 ≔ σ𝑖=1
𝑛 𝑎𝑖)

Choose a random array entry:
sum = 0;

for 𝑖 = 1,… , 𝑛:

with probability
𝑎𝑖

𝑆 − sum
:

pick index 𝑖; terminate

else

sum += 𝑎𝑖

Probability for Picking Index 𝒊:

ℙ index 𝑖 = 1 −
𝑎1
𝑆

⋅ 1 −
𝑎2

𝑆 − 𝑎1
⋅ ⋯ ⋅ 1 −

𝑎𝑖−1

𝑆 − σ𝑗=1
𝑖−2 𝑎𝑗

⋅
𝑎𝑖

𝑆 − σ𝑗=1
𝑖−1 𝑎𝑗

=
𝑆 − 𝑎1
𝑆

⋅
𝑆 − 𝑎1 − 𝑎2
𝑆 − 𝑎1

⋅ ⋯ ⋅
𝑆 − σ𝑗=1

𝑖−1 𝑎𝑗

𝑆 − σ𝑗=1
𝑖−2 𝑎𝑗

⋅
𝑎𝑖

𝑆 − σ𝑗=1
𝑖−1 𝑎𝑗

=
𝒂𝒊
𝑺

running time 𝑂(𝑛)

Algorithm Theory Fabian Kuhn 8

Choose a Random Node

Edge Sampling:

1. Choose a node 𝑢 ∈ 𝑉 with probability

deg(𝑢)

σ𝑣∈𝑉 deg(𝑣)
=
deg(𝑢)

2𝑚

• Need to keep track of node degrees and number of edges 𝑚

• Can at no extra cost (asymptotically) when doing edge contractions

2. Choose a uniformly random edge of 𝑢

Probability for getting edge 𝒆 between 𝒖 and 𝒗:

ℙ edge 𝑒 =
deg 𝑢

2𝑚
⋅

1

deg 𝑢
+
deg 𝑣

2𝑚
⋅

1

deg 𝑣
=

1

𝑚

Algorithm Theory Fabian Kuhn 9

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• One instance consists of 𝑛 − 2 edge contractions

• Each edge contraction can be carried out in time 𝑂(𝑛)
– Actually: 𝑂 current #nodes

• Time per instance of the contraction algorithm: 𝑂 𝑛2

