"nr Algorithm Theory

Chapter 7
Randomized Algorithms

Part VI:
Implementing Edge Contractions

Fabian Kuhn

UNI

FREIBURG

Implementing Edge Contractions

UNI
f

FREIBURG

Edge Contraction:
* Given: multigraph with n nodes

— assume that set of nodes is {1, ..., n}
e Goal: contract edge {u, v}
Data Structure
* We can use either adjacency lists or an adjacency matrix
* Entryinrow i and column j: #edges between nodes i and j

3 ;

 Example:
(A2
K/

Algorithm Theory Fabian Kuhn 2

AN

|l

-
O REFR ON
—_ OO Rk O
WOO R R

=

Contracting An Edge

UNI

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory

1 2 3 4 5 6 7
1lol1]{o|3|0]0]o0
>l1lol1lo]1]2]o0
3lof1|o]of2|2]0
413]0lolol1lo0]o0
slol1)2|1]o0]1]1
6lol2|2]0fl1]0]1
7loflolofol1|1]o0

351lol2 |1 3| 1

Fabian Kuhn

Contracting An Edge

UNI

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory

1 2 35 4 6
110/1]0]|3 00
21101120 210
3510121011 3|1
41310110 0|0
6101230 01

o|lo0o|1]|0 110

{3,501 0|2 g . 3] 1

Fabian Kuhn

Contracting an Edge

UNI
f

FREIBURG

Claim: Given the adjacency matrix of an n-node multigraph and
an edge {u, v}, one can contract the edge {u, v} in time O (n).

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix

Algorithm Theory Fabian Kuhn 5

Finding a Random Edge

UNI
f

FREIBURG

* We need to contract a uniformly random edge
* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0(n?).

Idea for more efficient algorithm:

* First choose a random node u
— with probability proportional to the degree (#edges) of u

* Pick arandom edge of u
— only need to look at one row = time 0(n)

Algorithm Theory Fabian Kuhn 6

Choose a Random Array Entry

UNI
FREIBURG

Problem: Given an array A = [aq, ..., a,, | with a; = 0, choose a random
index i with probability proportional to a;. (assume that S :== Y’ ; a;)

Choose a random array entry:
sum = 0;

for i=1,..,n:
ai

with probability - running time 0(n)

S—sum
pick index i; terminate
else
sum += a;

Probability for Picking Index i:

| . a, a, a;_1 a;
P(indexi) =({1——) -1 — (1=] ' J
() (S) < S — al) (S — 25;21 Clj) S — Z;_:11 a;

_5//611.5/—@1//“2” S =y=a; a; a;

s S S=¥Fa s=%a S

Algorithm Theory Fabian Kuhn 7

Choose a Random Node

UNI
f

FREIBURG

Edge Sampling:
1. Choose a node u € V with probability
deg(u) deg(u)
ZUEV deg(v) B Zm

* Need to keep track of node degrees and number of edges m

 Can at no extra cost (asymptotically) when doing edge contractions

2. Choose a uniformly random edge of u

Probability for getting edge e between u and v:

deg(u) 1 deg(v) 1 1

IP) = . . =
(edge €) 2m deg(u) 2m deg(v) m

Algorithm Theory Fabian Kuhn 8

Randomized Min Cut Algorithm

UNI
f

FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

 Time per instance of the contraction algorithm: 0(n?)

Algorithm Theory Fabian Kuhn 9

