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Chapter 7
Randomized Algorithms

Part VI:
Implementing Edge Contractions
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Implementing Edge Contractions
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Edge Contraction:
* Given: multigraph with n nodes

— assume that set of nodes is {1, ..., n}
e Goal: contract edge {u, v}
Data Structure
* We can use either adjacency lists or an adjacency matrix
* Entryinrow i and column j: #edges between nodes i and j
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Contracting An Edge
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Example: Contract one of the edges between 3 and 5
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Contracting An Edge
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Example: Contract one of the edges between 3 and 5
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1 2 35 4 6
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3510121011 3|1
41310110 0|0
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Contracting an Edge
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Claim: Given the adjacency matrix of an n-node multigraph and
an edge {u, v}, one can contract the edge {u, v} in time O (n).

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix
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Finding a Random Edge
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* We need to contract a uniformly random edge
* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0(n?).

Idea for more efficient algorithm:

* First choose a random node u
— with probability proportional to the degree (#edges) of u

* Pick arandom edge of u
— only need to look at one row = time 0(n)
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Choose a Random Array Entry
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Problem: Given an array A = [aq, ..., a,, | with a; = 0, choose a random
index i with probability proportional to a;. (assume that S :== Y’ ; a;)

Choose a random array entry:
sum = 0;

for i=1,..,n:
ai

with probability - running time 0(n)

S—sum
pick index i; terminate
else
sum += a;

Probability for Picking Index i:

| . a, a, a;_1 a;
P(indexi) =({1——) -1 — (1= ] ' J
( ) ( S) < S — al) ( S — 25;21 Clj) S — Z;_:11 a;

_5//611.5/—@1//“2” S =y=a; a; a;

s S S=¥Fa s=%a S
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Choose a Random Node
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Edge Sampling:
1. Choose a node u € V with probability
deg(u)  deg(u)
ZUEV deg(v) B Zm

* Need to keep track of node degrees and number of edges m

 Can at no extra cost (asymptotically) when doing edge contractions

2. Choose a uniformly random edge of u

Probability for getting edge e between u and v:

deg(u) 1 deg(v) 1 1

IP) = . . =
(edge €) 2m  deg(u) 2m  deg(v) m
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Randomized Min Cut Algorithm
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Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

 Time per instance of the contraction algorithm: 0(n?)
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