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Chapter 8
Approximation Algorithms

Part IV:
Knapsack Approximation Scheme
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Knapsack
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* nitems1,...,n, eachitem has weight w; > 0 and value v; > 0
* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

maxz (4
i€ES
s.t. SE€{1,..,n}and ZWi <Ww
i€ES

* E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value
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Knapsack: Dynamic Programming Alg.
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We saw two algorithms for the knapsack problem:

* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW).

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time O (n?V), where V is the max. value.

Problems:
 If W and V are large, the algorithms are not polynomial inn

* If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

* Can we adapt one of the algorithms to at least compute an
approximate solution?
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Approximation Algorithm
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 The algorithm hasa parameter0 < e <1
* We assume that each item by itself fits into the knapsack
 We define:

V = maxv;, Vi:v; = |—
1<isn eV

* We solve the problem with integer values ¥; and weights w;
using dynamic programming in time 0(n? - V)

U’I’l} ~

Theorem: The described algorithm runs in time O(n3/¢).

Proof:

V= max 5 = max [~ [ } ]

1<i<sn 1Si$n
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Approximation Algorithm
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Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
* Define the set of all feasible solutions (subsets of [n])

F =

SQ{l,...,n}:ZwiSW} U(S):zvi

LES i€eS

« v(S): value of solution S w.r.t. values vy, v, L v(S) = 212

PaN . PaN N\ iES
D(S): value of solution S w.r.t. values 74, D,, ...

* S7:an optimal solution w.r.t. values v, v,, ... §* = argmax v(S)
S :an optimal solution w.r.t. values ¥y, Dy, ... $ = argmax 9(S)
SEF

* Weights are not changed at all, hence, S is a feasible solution
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Approximation Algorithm

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
e We have
v(S*) = Z v; = rgeajg<z v, 9(S) = Zﬁi = rggZ@

IES* IES ieS IES

* Because every item fits into the knapsack by itself, we have
Vie{l, .., n}: v, <V <v(§")

e Also:V:=|—| = v, <—:7;, and?D; <—+1
L 5174 L n L ﬂl 5174
. vin vin vin
> <
T e [£V]_£V+1
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Approximation Algorithm
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Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof: 1% . vin
w5 | |06) <) | B+l
* We have n €

) vgV AveV A\/EV vin
v(S)=Zvi_7°ZUi_7- viSX. (1+?)

LES™ IES* iIES IES

e Therefore

v(S*)=Zvl_— vl<€V+v(S)

IES™ ieS §>\

S| <n = v(S) <e-v(S")

 We have v(S§*) > V and therefore eV < & - v(§7):
(1—¢) - v(s*) <v(S)
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Approximation Schemes
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For every parameter € > 0, the knapsack algorithm computes a
(1 — &)-approximation in time 0(n>/¢).

For every fixed &, we therefore get a polynomial time
approximation algorithm

An algorithm that computes an (1 % &)-approximation for every
& > 0 is called an approximation scheme.

If the running time is polynomial for every fixed &, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

Thus, the described alg. is an FPTAS for the knapsack problem
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