
Algorithm Theory – WS 2024/25

Chapter 1 : Divide and Conquer Algorithms – Part I

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Divide and Conquer Algorithms:
Overview

• Important and very powerful algorithm design method

• Highlevel idea:

1) Divide a given problem instance into several smaller
instances of the same kind

2) Solve the smaller instances recursively

3) Combine/merge solutions of small instances to obtain a
solution for the original problem

15. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 2

orig. problem instance

smaller
instance

smaller
instance

smaller
instance

divide

smaller
instance

smaller
instance

smaller
instance

solution to orig. problem

solve recursively

combine

Divide and Conquer Algorithms:
Examples

Examples from your basic algorithms and data structures lecture
• Sorting: Mergesort and Quicksort
• Searching: Binary Search

Other examples
• Computing the median value
• Computing the difference between two global orders
• Geometry problems: convex hull, Delaunay triangulation, Voronoi diagram, line intersection

closest pair of points
• Polynomial / integer multiplication, Fast Fourier Transform (FFT) algorithm
• …

15. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 3

Divide and Conquer Example: Quicksort

Goal: sort array ! Pseudocode

15. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 4

function QuickSort("):
if size(") > 1 then

choose pivot element # in "
partition " into
"ℓ with elements≤ # and
"" with elements≥ #

QuickSort("ℓ) // sort "ℓ recursively
QuickSort("") // sort "" recursively

! !

pivot

!ℓ ! !"
sort #ℓ and #"

recursively

partition

Divide and Conquer Example: Mergesort

Goal: sort array ! Pseudocode

15. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 5

function MergeSort(A, l, r):

if r > l then

m := (r + l) / 2 // integer division

MergeSort(A, l, m) // sort left half rec.
MergeSort(A, m, r) // sort right half rec.

merge(A, l, m, r)
// merge sorted left and right halves
// A[l..m-1] and A[m..r-1] into sorted
// array A[l..r-1]

!

!$
sort ## and #$

recursively

split in 2 arrays
of half the size

!%

!$!%

!

merge sorted halves
into sorted array

1. Divide

& ≤ (: Solve the problem directly.

& > (: Divide the problem into * subproblems of
 sizes &1, … , &% < &	(* ≥ 2).

2. Conquer

Solve the * subproblems in the same way
(typically by using recursion).

3. Combine

Combine the partial solutions to generate a solution for
the original instance.

Divide and Conquer: Highlevel Principle

15. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 6

Divide-and-conquer method for solving a
problem instance of size &: QS MS

choose pivot &
partition

divide in
middle

recursion recursion

- merge sorted
halves

Divide and Conquer: Analysis

15. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 7

Recurrence relation:
• 1(3) : max. number of steps for solving an instance of size &

• 1(3) = 6
(if & ≤ &&
9 &' +⋯+ 9 &% if & > &&
+ cost for divide and combine

Important Special Case: H = I, 3$ = 3% = ⁄()
• Cost for divide and combine: DC &
• 9(1) = (
• 9 & = 2 ⋅ 9(&/2) + DC(&)

Cost for Divide and Combine:

Quicksort:

• Divide (find pivot & partition): P &
• Combine (-): P 1

Mergesort:

• Divide (split in middle): P 1
• Combine (merge halves): P &

Mergesort: 9 & = 2 ⋅ 9 *
+ + P & ⟹ 9 & = P(& ⋅ log &)

Analysis Example: Mergesort

Recurrence relation:

! " ≤ 2 ⋅ ! ⁄" 2 + (", ! 1 ≤ (

Guess the solution by drawing the recursion tree :

9 &

9 T& 2 9 T& 2

9 T& 4 9 T& 4 9 T& 4 9 T& 4

9 1 9 1 9 1 9 1 9 1

⋮ ⋮ ⋮ ⋮

+,

- ⋅ + ⋅ ,- = +,

/ ⋅ + ⋅ ,/ = +,

, ⋅ 0 1 ≤ +,
Total time:

(1 + 345! ,) ⋅ +,

More General Recurrence Relations

Recurrence relation:

! " = 7 ⋅ ! "
8 + 9 "" , ! " = 9 1 for " ≤ "#

Obtain Intuition by Looking at Recursion: 9 &

9 T& V 9 T& V 9 T& V⋯

#

9 T& V+ 9 T& V+⋯

#

9 T& V+ 9 T& V+⋯

#

9 1 9 1 9 1 9 1 9 1
⋮ ⋮ ⋮ ⋮

⋯

More General Recurrence Relations

Recurrence relation:

! " = 7 ⋅ ! "
8 + 9 "" , ! " = 9 1 for " ≤ "#

Obtain Intuition by Looking at Recursion:

Rec. Level Subproblem Size #Subproblems Time

1 " 1 1 ⋅ ""

2 ⁄$ % 7 7 ⋅ ⁄$ % " = &
%& ⋅ "

"

3 ⁄$ %' 7' 7' ⋅ ⁄$ %'
" = &

%&
'
⋅ ""

⋮ ⋮ ⋮ ⋮
log% " 1 7()*($ 7()*($ ⋅ 1 = "()*(&

More General Recurrence Relations

Recurrence relation:

! " = 7 ⋅ ! "
8 + 9 "" , ! " = 9 1 for " ≤ "#

Obtain Intuition by Looking at Recursion:

Rec. Level Subproblem Size #Subproblems Time

1 " 1 1 ⋅ ""

2 ⁄$ % 7 7 ⋅ ⁄$ % " = &
%& ⋅ "

"

3 ⁄$ %' 7' 7' ⋅ ⁄$ %'
" = &

%&
'
⋅ ""

⋮ ⋮ ⋮ ⋮
log% " 1 7()*($ 7()*($ ⋅ 1 = "()*(&

Observations:
• Time grows/shrinks by factor ⁄7 8" per level

• If ⁄& %& < 1 ((> log% 7), first level dominates:
! " = 9 ""

• If ⁄& %& > 1 ((< log% 7), last level dominates:
! " = 9 "()*(&

• If ⁄& %& = 1 ((= log% 7), all levels are the same:
! " = 9 "" ⋅ log "

Recurrence Relations: Master Theorem

Recurrence relation:

! " = 7 ⋅ ! "
8 + C " , ! " = 9 1 for " ≤ "#

Cases:

• C " = 9(""), (< log% 7
0 , = D ,+,-) .

• C " = Ω "" , (> log% 7
0 , = D F ,

• C " = Θ "" ⋅ log/ " , (= log% 7
0 , = D ,0 ⋅ 345123 ,

Geometric divide-and-conquer

Closest Pair Problem:
• Given a set ' of & points, find a pair

of points with the smallest distance.

Naïve solution:

• Go over all pairs of points, compute distance, take minimum

• Time: (&*

Divide-and-Conquer Solution

1. Sort points by W-coordinate
2. Divide:

• Divide X into two equal sized sets Xℓ und X+.
3. Conquer:

• Recursively find Yℓ = mindist Xℓ , Y+ = mindist X,
4. Combine:

• Define Y ≔ min Yℓ, Y,
• Compute Yℓ, ≔ min Y [, V ∶ [∈ Xℓ, V ∈ X,

#
$ℓ

$ℓ* $*

#^#ℓ

only needed
if Yℓ, < min Yℓ, Y,

Divide-and-Conquer Solution

1. Sort points by W-coordinate
2. Divide:

• Divide X into two equal sized sets Xℓ und X+.
3. Conquer:

• Recursively find Yℓ = mindist Xℓ , Y+ = mindist X,
4. Computation of _ℓ" if _ℓ" < _:

• Points [∈ Xℓ and V ∈ X, must be within distance Y
of the dividing line between Xℓ and X,

#
$ℓ

$ℓ* $*

#^#ℓ

$

$ $

$ = min{$ℓ, $*}

Combine step

+ +

+ = min{+ℓ	, +2}

'

'ℓ '#

41

43

44

42

+
HI 2

J
J

+

+

Divide-and-Conquer Solution

1. Consider only points within distance ≤ Y of the bisection line,
in the order of increasing `-coordinates.

2. For each point a consider all points b on the other side
which are within `-distance less than Y
• It suffices to consider the points b with equal or larger `-coordinate

3. There are at most 4 such points!

HI 2

J

+

+

Divide-and-Conquer Solution

• Initially sort the points in X in order of increasing W-coordinates

• While computing closest pair, sort X according to `-coordinates
• Partition X into Xℓ and X,, solve and sort sub-problems recursively

• Thus, when combining 'ℓ and '", points in each part are sorted by 5-coordinates

• Merge to get sorted X according to `-coordinates
• Center points: points within W-distance Y = min Yℓ, Y, of center
• Go through center points in X in order of incr. `-coordinates

• Each point only has to be compared to the 7 next center points
in the sorted order of all center points
(when including the center points on the same side)

HI 2

J

+

+

Running Time

Recurrence relation:
9 & = 2 ⋅ 9 ⁄& 2 + (⋅ &, 9 1 ≤ (

Solution:
• Same as for computing number of Mergesort (and many others…)

9 & = P(& ⋅ log &)

