universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 1 : Divide and Conquer Algorithms – Part I

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Divide and Conquer Algorithms: Overview

- Important and very powerful algorithm design method
- Highlevel idea:
 - Divide a given problem instance into several smaller instances of the same kind
 - 2) Solve the smaller instances recursively
 - Combine/merge solutions of small instances to obtain a solution for the original problem

Divide and Conquer Algorithms: Examples

Examples from your basic algorithms and data structures lecture

- Sorting: Mergesort and Quicksort
- Searching: Binary Search

Other examples

- Computing the median value
- Computing the difference between two global orders
- Geometry problems: convex hull, Delaunay triangulation, Voronoi diagram, line intersection closest pair of points
- Polynomial / integer multiplication, Fast Fourier Transform (FFT) algorithm

•

Divide and Conquer Example: Quicksort

Pseudocode

```
function QuickSort(A):
    if size(A) > 1 then
        choose pivot element x in A
        partition A into
        A_{\ell} with elements \leq x and
        A_r with elements \geq x
        QuickSort(A_{\ell}) // sort A_{\ell} recursively
        QuickSort(A_r) // sort A_r recursively
```

Divide and Conquer Example: Mergesort

Divide and Conquer: Highlevel Principle

Divide-and-conquer method for solving a problem instance of size n :	QS	MS
1. Divide		
$n \leq c$: Solve the problem directly.	choose nivot &	divide in
$n > c$: Divide the problem into k subproblems of sizes $n_1, \ldots, n_k < n \ (k \ge 2)$. (Let possible)	partition	middle
2. Conquer		
Solve the k subproblems in the same way (typically by using recursion).	recursion	recursion
3. Combine		
Combine the partial solutions to generate a solution for the original instance.		merge sorted halves

Divide and Conquer: Analysis

Recurrence relation:

• $\underline{T(n)}$: max. number of steps for solving an instance of size n• $\underline{T(n)} = \begin{cases} \frac{c}{T(n_1) + \dots + T(n_k)} & \text{if } n > n_0 \\ \hline + \cos t \text{ for divide and combine} \end{cases}$

Important Special Case: k = 2, $n_1 = n_2 = n/2$

- Cost for divide and combine: DC(n)
- T(1) = c
- $\underline{T(n)} = \underline{2 \cdot T(n/2)} + \underline{DC(n)}$

Mergesort: $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n) \implies \underline{T(n)} = O(n \cdot \log n)$

Cost for Divide and Combine:

Quicksort:

- Divide (find pivot & partition): O(n)
- Combine ():

O(1)

Mergesort:

• Divide (split in middle):

- <u>0(1)</u>
- Combine (merge halves):

Analysis Example: Mergesort

Recurrence relation:

$$\underline{T(n)} \le \underline{2 \cdot T(n/2)} + \underline{cn}, \qquad T(1) \le \underline{c}$$

Guess the solution by drawing the recursion tree :

More General Recurrence Relations

Recurrence relation:

$$T(n) = \underline{a} \cdot T\left(\frac{n}{b}\right) + O(n^c), \qquad T(n) = O(1) \text{ for } n \le n_0$$

More General Recurrence Relations

Recurrence relation:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^c), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Obtain Intuition by Looking at Recursion:

Rec. Level	Subproblem Size	#Subproblems	Time
1	n	<u>1</u>	$1 \cdot n^c \leq$
2	$\frac{n}{b}$	a	$\underline{a} \cdot (\underline{n/b})^c = \frac{a}{b^c} \cdot n^c$
3	$\frac{n}{b^2}$	$\underline{a^2}$	$a^2 \cdot \left(\frac{n}{b^2}\right)^c = \left(\frac{a}{b^c}\right)^2 \cdot n^c$
• •	• • •	•	
$\log_b n$	1	$(a^{\log_b n})$	$a^{\log_b n} \cdot 1 = n^{\log_b a}$

b = N

 $\left(\frac{a}{b^{c}}\right)^{2} \cdot n^{c}$ $\frac{a}{b^{c}} < 1 \qquad \frac{a}{b^{c}} > 1$

More General Recurrence Relations

Recurrence relation:

ence relation:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^{c}), \qquad T(n) = O(1) \text{ for } n \le n_{0} \int_{0}^{b} \left(\frac{n}{b}\right) \ge \alpha \cdot \left(\frac{n}{b}\right)^{c}$$

Obtain Intuition by Looking at Recursion:

Observations:

- Time grows/shrinks by factor (a/b^c) per level
- If $a_{bc} < 1$ ($c > \log_b a$), first level dominates: $T(n) = O(n^c)$
- If $a_{b^c} > 1$ ($c < \log_b a$), last level dominates: $\overline{T(n)} = O(n^{\log_b a})$
- If $a_{/bc} = 1$ ($c = \log_b a$), all levels are the same: $T(n) = O(n^c \cdot \log n)$

 $\alpha \cdot f(\frac{n}{p})$ $1 \cdot n^c$ $a \cdot (n/b)^c = \frac{a}{b^c} \cdot n^c$ $a^2 \cdot \left(\frac{n}{b^2}\right)^c = \left(\frac{a}{b^c}\right)^2 \cdot n^c$ • $a^{\log_b n} \cdot 1 = n^{\log_b a}$

 $f\left(\frac{n}{b}\right) \in \underbrace{f^{(n)}}_{1}$

Recurrence Relations: Master Theorem

Recurrence relation:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \underline{f(n)}, \qquad T(n) = O(1) \text{ for } n \le n_0$$

E times

Cases:

•
$$f(n) = O(n^c), c < \log_b a$$

 $O(x^c)!$
 $T(n) = O(n^{\log_b a})$
• $f(n) = \Omega(n^c), c > \log_b a$
 $T(n) = O(f(n))$
 $O(y^{(k)} = O(y^{(k)}) = O(y^{(k)}), c = \log_b a$
 $T(n) = O(n^c \cdot \log^k n), c = \log_b a$
 $T(n) = O(n^c \cdot \log^{k+1} n)$
 $O(y^{(k)} = O(y^{(k)}) = O(y^{(k)})$

Geometric divide-and-conquer

Closest Pair Problem: $\lim_{k \to \infty} \mathbb{R}^2$

• Given a set *S* of *n* points, find a pair of points with the smallest distance.

Naïve solution:

- Go over all pairs of points, compute distance, take minimum
- Time: $O(n^2)$

- 1. Sort points by *x*-coordinate
- 2. Divide:
 - Divide *S* into two equal sized sets S_{ℓ} und S_r .
- 3. Conquer:
 - Recursively find $d_{\ell} = \text{mindist}(S_{\ell}), d_r = \text{mindist}(S_r)$
- 4. Combine:
 - Define $d \coloneqq \min\{d_{\ell}, d_{\underline{r}}\}$
 - Compute $\underline{d_{\ell r}} \coloneqq \min\{d(a, b) : a \in S_{\ell}, b \in S_{r}\}$

only needed if $d_{\ell r} < \min\{d_{\ell}, d_r\}$

S

- 1. Sort points by *x*-coordinate
- 2. Divide:
 - Divide S into two equal sized sets S_{ℓ} und S_r .
- 3. Conquer:
 - Recursively find $d_{\ell} = \text{mindist}(S_{\ell}), d_r = \text{mindist}(S_r)$
- 4. Computation of $d_{\ell r}$ if $d_{\ell r} < d$:
 - Points $a \in S_{\ell}$ and $b \in S_r$ must be within distance d of the dividing line between S_{ℓ} and S_r

Combine step

- 1. Consider only points within distance $\leq d$ of the bisection line, in the order of increasing *y*-coordinates.
- 2. For each point p consider all points q on the other side which are within y-distance less than d
 - It suffices to consider the points q with equal or larger y-coordinate
- 3. There are at most 4 such points!

- Initially sort the points in *S* in order of increasing *x*-coordinates
- While computing closest pair, sort *S* according to *y*-coordinates
 - Partition S into S_{ℓ} and S_r , solve and sort sub-problems recursively
 - Thus, when combining S_{ℓ} and S_r , points in each part are sorted by *y*-coordinates
 - Merge to get sorted *S* according to *y*-coordinates
 - Center points: points within x-distance $d = \min\{d_{\ell}, d_{r}\}$ of center
 - Go through center points in *S* in order of incr. *y*-coordinates
 - Each point only has to be compared to the 7 next center points in the sorted order of all center points (when including the center points on the same side)

Running Time

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + c \cdot n, \qquad T(1) \le c$$

Solution:

• Same as for computing number of Mergesort (and many others...)

 $T(n) = O(n \cdot \log n)$