
Algorithm Theory – WS 2024/25

Chapter 1 : Divide and Conquer Algorithms
(Multiplication of Polynomials)

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Polynomials

Real polynomial 𝒑 in one variable 𝒙:

 𝑝 𝑥 = 	𝑎!"#𝑥!"# 	+ 	…	+ 𝑎#𝑥1	 + 	𝑎0

Coefficients of 𝑝: 𝑎$, 𝑎#, … , 𝑎!"# ∈ ℝ

Degree of 𝑝: largest power of 𝑥 in 𝑝 (𝑛 − 1 in the above case)

Example:
𝑝(𝑥) 	= 	3𝑥3	– 	15𝑥2	 + 	18𝑥

Set of all real-valued polynomials in 𝑥: ℝ[𝑥] (polynomial ring)

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 2

Operations on Polynomials

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 3

We will focus on
multiplication.

• Given: Polynomials 𝑝, 𝑞 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎!"#𝑥!"# + 𝑎!"%𝑥!"% +⋯+ 𝑎#𝑥 + 𝑎$
𝑞 𝑥 = 𝑏!"#𝑥!"# + 𝑏!"%𝑥!"% +⋯+ 𝑏#𝑥 + 𝑏$

• How expensive are basic operations on these polynomials?
• Evaluation: What is 𝑝 𝑥$ for a given value 𝑥$ ∈ ℝ?
• Addition: Compute the polynomial 𝑝 𝑥 + 𝑞 𝑥
• Multiplication: Compute the polynomial 𝑝 𝑥 ⋅ 𝑞 𝑥

• Computational Models
• RAM (random access machine): standard model for algorithm analysis

• Reading / writing one memory cell costs 1 time unit
• Basic arithmetic op. on integers cost 1 time unit (if integers fit in a mem. cell)

• Real RAM:
• Also basic arithmetic operations on real numbers cost 1 time unit
• We will now use this assumption

Operations on Polynomials : Evaluation

• Given: Polynomial 𝑝 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎!"#𝑥!"# + 𝑎!"%𝑥!"% +⋯+ 𝑎#𝑥 + 𝑎$

• Horner’s method for evaluation at specific value 𝑥$:

𝑝 𝑥$ = … 𝑎!"#𝑥$ + 𝑎!"% 𝑥$ + 𝑎!"& 𝑥$ +⋯+ 𝑎# 𝑥$ + 𝑎$

• Pseudo-code:
𝑝 ≔ 𝑎!"#; 𝑖 ≔ 𝑛 − 1;
while (𝑖 > 0) do

𝑖 ≔ 𝑖 − 1;
𝑝 ≔ 𝑝 ⋅ 𝑥$ + 𝑎'

• Running time: 𝑂(𝑛)

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 4

Operations on Polynomials : Addition

• Given: Polynomials 𝑝, 𝑞 ∈ ℝ[𝑥] of degree 𝑛 − 1

𝑝 𝑥 = 𝑎!"#𝑥!"# + 𝑎!"%𝑥!"% +⋯+ 𝑎#𝑥 + 𝑎$
𝑞 𝑥 = 𝑏!"#𝑥!"# + 𝑏!"%𝑥!"% +⋯+ 𝑏#𝑥 + 𝑏$

• Compute sum 𝑝 𝑥 + 𝑞 𝑥 :

𝑝 𝑥 + 𝑞 𝑥
= 𝑎!"#𝑥!"# +⋯+ 𝑎$ + 𝑏!"#𝑥!"# +⋯+ 𝑏$
= 𝑎!"# + 𝑏!"# 𝑥!"# +⋯+ 𝑎# + 𝑏# 𝑥 + (𝑎$ + 𝑏$)

• Running time: 𝑂(𝑛)

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 5

Operations on Polynomials : Multiplication

• Given: Polynomials 𝑝, 𝑞 ∈ ℝ[𝑥] of degree 𝑛 − 1
𝑝 𝑥 = 𝑎!"#𝑥!"# +⋯+ 𝑎#𝑥 + 𝑎$
𝑞 𝑥 = 𝑏!"#𝑥!"# +⋯+ 𝑏#𝑥 + 𝑏$

• Product 𝑝 𝑥 ⋅ 𝑞(𝑥):

𝑝 𝑥 ⋅ 𝑞 𝑥 = 𝑎!"#𝑥!"# +⋯+ 𝑎$ ⋅ 𝑏!"#𝑥!"# +⋯+ 𝑏$
= 𝑐%!"%𝑥%!"% + 𝑐%!"&𝑥%!"& +⋯+ 𝑐#𝑥 + 𝑐$

• Obtaining 𝑐(: what products of monomials have degree 𝑖?

For 0 ≤ 𝑘 ≤ 2𝑛 − 2: 𝑐(=I
')$

(

𝑎'𝑏("'

where 𝑎' = 𝑏' = 0 for 𝑖 ≥ 𝑛.

• Running time naïve algorithm: 𝑂 𝑛%

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 6

Operations on Polynomials : Faster Multiplication?

• Multiplication is slow Θ 𝑛%

• Try divide-and-conquer to get a faster algorithm

• Assume: degree is 𝑛 − 1, 𝑛 is even

• Divide polynomial 𝑝 𝑥 = 𝑎!"#𝑥!"# +⋯+ 𝑎$ into 2 polynomials of degree ⁄! % − 1:

𝑝$ 𝑥 = 𝑎 *! %"#
𝑥 *! %"# +⋯+ 𝑎$

𝑝# 𝑥 = 𝑎!"#𝑥 *! %"# +⋯+ 𝑎 *! %

𝑝 𝑥 = 𝑝# 𝑥 ⋅ 𝑥 *! % + 𝑝$ 𝑥

• Similarly: 𝑞 𝑥 = 𝑞# 𝑥 ⋅ 𝑥 ⁄! " + 𝑞$ 𝑥

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 7

Polynomial Multiplication : Divide-And-Conquer

• Divide:
𝑝 𝑥 = 𝑝# 𝑥 ⋅ 𝑥 *! % + 𝑝$ 𝑥 , 𝑞 𝑥 = 𝑞# 𝑥 ⋅ 𝑥 *! % + 𝑞$ 𝑥

• Multiplication:
𝑝 𝑥 𝑞 𝑥 = 𝑝# 𝑥 𝑞# 𝑥 ⋅ 𝑥! +

𝑝$ 𝑥 𝑞# 𝑥 + 𝑝# 𝑥 𝑞$(𝑥) ⋅ 𝑥 *! % + 𝑝$ 𝑥 𝑞$(𝑥)

• 4 multiplications of degree ⁄! % − 1 polynomials:

𝑇 𝑛 = 4𝑇 O𝑛 2 + 𝑂 𝑛

• Leads to 𝑇 𝑛 = Θ 𝑛% like the naive algorithm…
• follows immediately by using the master theorem

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 8

Polynomial Multiplication : More Clever Recursive Solution

• Recall that
𝑝 𝑥 𝑞 𝑥 = 𝑝! 𝑥 𝑞! 𝑥 ⋅ 𝑥" +

𝑝# 𝑥 𝑞! 𝑥 + 𝑝! 𝑥 𝑞#(𝑥) ⋅ 𝑥 $" % + 𝑝# 𝑥 𝑞#(𝑥)

• Compute 𝑟 𝑥 = 𝑝# 𝑥 + 𝑝! 𝑥 ⋅ 𝑞# 𝑥 + 𝑞! 𝑥 :

Algorithm:
• Compute (recursively):

• 𝑝 𝑥 𝑞 𝑥 = ⋅ 𝑥" + 𝑎&% − − ⋅ 𝑥 ⁄& ' +

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 9

𝑟 𝑥 = 𝑝# 𝑥 𝑞# 𝑥 + 𝑝# 𝑥 𝑞! 𝑥 + 𝑝! 𝑥 𝑞# 𝑥 + 𝑝! 𝑥 𝑞!(𝑥)

𝑝# 𝑥 ⋅ 𝑞# 𝑥 𝑝! 𝑥 ⋅ 𝑞! 𝑥 𝑟 𝑥 = 𝑝# 𝑥 + 𝑝! 𝑥 ⋅ 𝑞# 𝑥 + 𝑞! 𝑥

Polynomial Multiplication : Karatsuba Algorithm

• Recursive multiplication:
𝑟 𝑥 = 𝑝$ 𝑥 + 𝑝# 𝑥 ⋅ 𝑞$ 𝑥 + 𝑞# 𝑥

𝑝 𝑥 𝑞 𝑥 = 𝑝# 𝑥 ⋅ 𝑞# 𝑥 ⋅ 𝑥!

+ 𝑟 𝑥 − 𝑝$ 𝑥 𝑞$ 𝑥 − 𝑝# 𝑥 𝑞#(𝑥) ⋅ 𝑥 *! %

+ 𝑝$ 𝑥 ⋅ 𝑞$ 𝑥 *# #

• Recursively do 3 multiplications of degree ⁄! % − 1 -polynomials

𝑇 𝑛 = 3𝑇 O𝑛 2 + 𝑂(𝑛)

• Gives: 𝑇 𝑛 = 𝑂 𝑛,-." & = 𝑂 𝑛#.01234… (see Master theorem)

• Can we do even better?

23. Oktober 2024Albert-Ludwigs-Universität Freiburg | Präsentationstitel | 10

Representation of Polynomials

Coefficient Representation: Polynomial of degree 𝑛 − 1 defined by coefficients 𝑎#, … , 𝑎"(!:

𝑝 𝑥 = 𝑎# + 𝑎!𝑥 + 𝑎%𝑥% +⋯+ 𝑎"(!𝑥"(!

Point-value Representation: Polynomial 𝑝 𝑥 of degree 𝑛 − 1 is given by 𝑛 point-value pairs:

𝑝 = 𝑥#, 𝑝 𝑥# , 𝑥!, 𝑝 𝑥! , … , 𝑥"(!, 𝑝 𝑥"(! , where 𝑥) ≠ 𝑥* for 𝑖 ≠ 𝑗.

Example: The polynomial

𝑝 𝑥 = 3𝑥+ − 15𝑥% + 18𝑥 = 3𝑥 𝑥 − 2 𝑥 − 3

is uniquely defined by the four point-value pairs 0,0 , 1,6 , 2,0 , 3,0 .

Operations: Coefficient Representation

𝒑 𝒙 = 𝒂𝒏(𝟏𝒙𝒏(𝟏 +⋯+ 𝒂𝟎, 𝒒 𝒙 = 𝒃𝒏(𝟏𝒙𝒏(𝟏 +⋯+ 𝒃𝟎

Evaluation: Horner’s method: Time 𝑂 𝑛

Addition:
𝑝 𝑥 + 𝑞 𝑥 = 𝑎"(! + 𝑏"(! 𝑥"(! +⋯+ (𝑎# + 𝑏#)

• Time: 𝑂(𝑛)

Multiplication:

𝑝 𝑥 ⋅ 𝑞 𝑥 = 𝑐%"(%𝑥%"(% +⋯+ 𝑐#, where 𝑐) =G
*/#

)

𝑎*𝑏)(*

• Naïve solution: Need to compute product 𝑎)𝑏* for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛

• Time: Naïve alg. 𝑂(𝑛%) Karatsuba Alg. 𝑂 𝑛!.12345…

Operations: Coefficient Representation

𝒑 = 𝒙𝟎, 𝒑 𝒙𝟎 , … , 𝒙𝒏(𝟏, 𝒑 𝒙𝒏(𝟏 , 𝒒 = 𝒙𝟎, 𝒒 𝒙𝟎 , … , 𝒙𝒏(𝟏, 𝒒 𝒙𝒏(𝟏

• Note: We use the same points 𝒙𝟎, … , 𝒙𝒏(𝟏 for both polynomials.

Addition:
𝑝 + 𝑞 = 𝑥#, 𝑝 𝑥# + 𝑞 𝑥# , … , 𝑥"(!, 𝑝 𝑥"(! + 𝑞 𝑥"(!

• Time: 𝑂(𝑛)

Multiplication:
𝑝 ⋅ 𝑞 = 𝑥#, 𝑝 𝑥# ⋅ 𝑞 𝑥# , … , 𝑥%"(%, 𝑝 𝑥%"(% ⋅ 𝑞 𝑥%"(%

• Time: 𝑂(𝑛)

• Remark: Need both polynomials at (the same) 2𝑛 − 1 points.

Evaluation: Polynomial interpolation can be done in 𝑂 𝑛%

Operations on Polynomials

Cost depending on representation:

Coefficient Point-Value

Evaluation 𝑶(𝒏) 𝑶 𝒏𝟐

Addition 𝑶 𝒏 𝑶 𝒏

Multiplication 𝑶(𝒏𝟏.𝟓𝟖) 𝑶 𝒏

default
representation

Can we
improve this?

Faster Multiplication of Polynomials?

Observation: Multiplication is fast when using the point-value representation

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2×2𝑛 point-value pairs 𝑥), 𝑝 𝑥) and 𝑥), 𝑞 𝑥)

2𝑛 point-value pairs 𝑥), 𝑝 𝑥) 𝑞 𝑥)

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝑥#, 𝑥!, … , 𝑥%"(%

Point-wise multiplication

Interpolation

Time: 𝑂(𝑛)

We will consider
this first.
Remark: We can
freely choose the
points.

Coefficient to Point-Value Representation

Given: Polynomial 𝑝 𝑥 by the coefficient vector 𝑎#, 𝑎!, … , 𝑎7(!
Goal: Compute 𝑝 𝑥 for all 𝑥 in a given set 𝑿

• Where 𝑋 is of size 𝑋 = 𝑁
• Assume that 𝑁 is a power of 2

Divide and Conquer Approach
• Divide 𝑝 𝑥 of degree 𝑁 − 1 (𝑁 is even) into 2 polynomials of degree ⁄7 %− 1

differently than in Karatsuba’s algorithm

• 𝑝# 𝑦 = 𝑎# + 𝑎%𝑦 + 𝑎3𝑦% +⋯+ 𝑎7(%𝑦 ⁄('(! (even coefficients)
𝑝! 𝑦 = 𝑎! + 𝑎+𝑦 + 𝑎1𝑦% +⋯+ 𝑎7(!𝑦 ⁄('(! (odd coefficients)

𝑁 ≥ 2𝑛 − 1

We will fix 𝑋 later.

Coefficient to Point-Value Representation

Goal: Compute 𝑝 𝑥 for all 𝑥 in a given set 𝑋 of size 𝑋 = 𝑁

• Divide 𝑝 𝑥 of degree 𝑁 − 1 into 2 polynomials of degree ⁄7 %− 1

𝑝# 𝑦 = 𝑎# + 𝑎%𝑦 + 𝑎3𝑦% +⋯+ 𝑎7(%𝑦 ⁄('(! (even coefficients)
𝑝! 𝑦 = 𝑎! + 𝑎+𝑦 + 𝑎1𝑦% +⋯+ 𝑎7(!𝑦 ⁄('(! (odd coefficients)

Let’s first look at the “combine” step:
• We need to compute 𝑝 𝑥 for all 𝑥 ∈ 𝑋 after recursive calls for polynomials 𝑝# and 𝑝!:
• Plug 𝑦 = 𝑥% into 𝑝# 𝑦 and 𝑝! 𝑦 :

𝑝# 𝑥% = 𝑎# + 𝑎%𝑥% + 𝑎3𝑥3 +⋯+ 𝑎7(%𝑥7(%
𝑝! 𝑥% = 𝑎! + 𝑎+𝑥% + 𝑎1𝑥3 +⋯+ 𝑎7(!𝑥7(%

𝒑 𝒙 = 𝒑𝟎 𝒙𝟐 + 𝒙 ⋅ 𝒑𝟏 𝒙𝟐

Coefficient to Point-Value Representation

Goal: Compute 𝑝 𝑥 for all 𝑥 in a given set 𝑋 of size 𝑋 = 𝑁

• Divide 𝑝 𝑥 of degree 𝑁 − 1 into 2 polynomials of degree ⁄7 %− 1

𝑝# 𝑦 = 𝑎# + 𝑎%𝑦 + 𝑎3𝑦% +⋯+ 𝑎7(%𝑦 ⁄('(! (even coefficients)
𝑝! 𝑦 = 𝑎! + 𝑎+𝑦 + 𝑎1𝑦% +⋯+ 𝑎7(!𝑦 ⁄('(! (odd coefficients)

Let’s first look at the “combine” step:

∀𝒙 ∈ 𝑿 ∶ 𝒑 𝒙 = 𝒑𝟎 𝒙𝟐 + 𝒙 ⋅ 𝒑𝟏 𝒙𝟐

• Goal: recursively compute 𝑝# 𝑦 and 𝑝!(𝑦) for all 𝑦 ∈ 𝑋%

• Where 𝑋% ≔ 𝑥% ∶ 𝑥 ∈ 𝑋

• Generally, we have 𝑋% = |𝑋|

Coefficient to Point-Value Representation: Analysis

Let’s get a recurrence relation for the given algorithm:

Time for polynomial of degree 𝑵 with set 𝑿: 𝑻 𝑵, 𝑿

𝑇 𝑁, 𝑋 = 2 ⋅ 𝑇 X𝑁 2 , 𝑋
% + 𝑂 𝑁 + 𝑋

Assume that 𝑿𝟐 = 𝑿 = 𝑵:

𝑇 𝑁,𝑁 = 2 ⋅ 𝑇 X𝑁 2 ,𝑁 + 𝑂 𝑁 = 4 ⋅ 𝑇 X𝑁 4 ,𝑁 + 𝑂(𝑁)

= … = 𝑁 ⋅ 𝑇 1, 𝑁 + 𝑂 𝑁

𝑇 1,𝑁 = 𝑂(𝑁)

We therefore get 𝑇 𝑁, 𝑋 = 𝑂 𝑁% .

⟹ We need 𝑿𝟐 < 𝑿 to get a faster algorithm!

Faster Algorithm? Choice of 𝑿?

In order to have a faster algorithm, we need 𝑋% < |𝑋|:

⟹ 𝑋% < 𝑋 if 𝑋 contains values 𝑥 and 𝑥9 such that 𝑥 ≠ 𝑥′, but 𝑥% = 𝑥9%:

𝑿 = −𝟏,+𝟏 ⟹ 𝑿𝟐 = +𝟏

We also need 𝑋% % = 𝑋3 < 𝑋% :
• Can we get a set 𝑌 of size 4 such that 𝑌% = −1,+1 ?

Complex numbers ℂ:
• Define imaginary constant 𝑖 such that 𝑖% = −1
• Complex numbers: ℂ = 𝑎 + 𝑖 ⋅ 𝑏 | 𝑎, 𝑏 ∈ ℝ

𝒀 = −𝟏,+𝟏,−𝒊, +𝒊 ⟹ 𝒀𝟐 = −𝟏,+𝟏

∀𝑦 ∈ ℂ ∖ 0 , there are exactly 2 numbers 𝑥!, 𝑥% ∈ ℂ such that 𝑥!% = 𝑥%% = 𝑥
• and more generally exactly 𝑘 solutions 𝑥 to the equation 𝑥: = 𝑦

Faster Algorithm? Choice of 𝑿?

For every 𝒚 ∈ ℂ and 𝒄 ∈ ℕ, there are exactly 𝒄 values 𝒙 ∈ ℂ for which 𝒙𝒄 = 𝒚

• Choose 𝑁 as a power of 2 (say 𝑁 = 2ℓ) and the set 𝑋 as

𝑿 ≔ 𝒙 ∈ ℂ ∶ 𝒙𝑵 = 𝟏

• The set 𝑋 has size 𝑋 = 𝑁 = 2ℓ

• Claim: The set 𝑋% can be defined as 𝑋% = 𝑦 ∈ ℂ ∶ 𝑦 ⁄7 % = 1
• If 𝑦 ∈ 𝑋%, there is 𝑥 ∈ 𝑋 s.t. 𝑥% = 𝑦 and thus 𝑥7 = 𝑥% ⁄7 % = 𝑦 ⁄7 % = 1
• If 𝑦 ⁄7 % = 1, there is 𝑥 ∈ 𝑋 s.t. 𝑥% = 𝑦, and thus 𝑦 ⁄7 % = 𝑥% ⁄7 % = 𝑥7 = 1

• With the same argumentation, we obtain that
• For 𝑘 = 2) and 𝑖 ∈ {0,… , ℓ} ,we have 𝑋: = 𝑦 ∈ ℂ ∶ 𝑦 ⁄7 : = 1 and thus 𝑋: = ⁄𝑁 𝑘
• Hence: 𝑋 = 𝑁, 𝑋% = ⁄𝑁 2 , 𝑋3 = ⁄𝑁 4 , 𝑋2 = ⁄𝑁 8 , … , 𝑋7 = 1

known as the 𝑁=>

complex roots of unity

𝑋% are the ⁄7 %
=>

complex roots of unity

Complex Roots of Unity

Polar Form of Complex Numbers
• A complex number can be written as

𝑎 + 𝑖 ⋅ 𝑏 = 𝑟 ⋅ cos𝜑 + 𝑖 ⋅ sin𝜑 , where 𝑟 = 𝑎% + 𝑏%

Euler’s Formula: 𝑒)⋅@ = cos𝜑 + 𝑖 ⋅ sin𝜑

The 𝑁=> roots of unity 𝑥#, … , 𝑥7(! ∈ ℂ such that 𝑥: 7 = 1:

Define 𝜔7 ≔ 𝑒 $678
9 and 𝑥: ≔ 𝜔7 : = 𝜔7: = 𝑒 $678⋅;

9

• We then have

𝑥: 7 = 𝑒 $%A)⋅:
7

7
= 𝑒 $%A)⋅:

7⋅7 = 𝑒%A:⋅)

= cos 2𝜋 ⋅ 𝑘 + 𝑖 ⋅ sin(2𝜋 ⋅ 𝑘) = 1

= cos 0 + 𝑖 ⋅ sin 0 = 1

𝝎𝟖
𝟏

𝝎𝟖
𝟐

𝝎𝟖
𝟑

𝝎𝟖
𝟒

𝝎𝟖
𝟓

𝝎𝟖
𝟔

𝝎𝟖
𝟕

𝝎𝟖
𝟎 = 𝟏

= 𝟏

𝝋

𝒆𝒊⋅𝝋

Properties of the Roots of Unity

Proof: Recall that 𝜔" = 𝑒 ⁄')* &, 𝑒%A) = 1

𝜔H"H: = 𝜔H" H: = 𝑒
%A)
H"

H:
= 𝑒

%A)
H" ⋅H: = 𝑒

%A)
" ⋅: = 𝜔":

𝜔":I" = 𝑒
%A)
"

:I"
= 𝑒

%A)
" ⋅ :I" = 𝑒

%A)
" ⋅: ⋅ 𝑒%A) = 𝜔":

Cancellation Lemma: For all integers 𝑛 > 0, 𝑘 ≥ 0, and 𝑑 > 0, we have:

𝝎𝒅𝒏
𝒅𝒌 = 𝝎𝒏

𝒌 , 𝝎𝒏
𝒌V𝒏 = 𝝎𝒏

𝒌

Properties of the Roots of Unity

Proof: We just showed: 𝜔H"H: = 𝜔": , 𝜔":I" = 𝜔":

• Consider some 𝑥 = 𝜔%:
* ∈ 𝑋:

𝑥% = 𝜔%:
* %

= 𝜔%:
%* = 𝜔:

*

If 𝑗 ≥ 𝑘 ∶ 𝜔:
* = 𝜔:

*(:

• Clearly, 𝑋% = 𝑋 /2 (𝑋 = 2𝑘, 𝑋% = 𝑘).

Claim: If 𝑋 = 𝜔%:
* ∶ 𝑗 ∈ 0, … , 2𝑘 − 1 , we have

𝑿𝟐 = 𝝎𝒌
𝒋 ∶ 𝒋 ∈ 𝟎,… , 𝒌 − 𝟏 , 𝑿𝟐 =

𝑿
𝟐

Coefficient to Point-Value Representation: Analysis

Time for polynomial of degree 𝑵 with set 𝑿: 𝑻 𝑵, 𝑿

𝑇 𝑁, 𝑋 = 2 ⋅ 𝑇 6𝑁 2 , 𝑋
(+ 𝑂 𝑁 + 𝑋

By choosing 𝑿 = 𝝎𝑵
𝟎 , … ,𝝎𝑵

𝑵(𝟏 :
• The number of points gets halved on all recursion levels

To compute 𝑝 𝑥 for the 𝑁 points in 𝑋, we recursively compute 𝑝# 𝑥% and 𝑝! 𝑥% for all 𝑥% ∈ 𝑋%

• 𝑝 has degree 𝑁 − 1, 𝑝# and 𝑝! have degree ⁄7 % − 1, 𝑋% = X|L|
%

• Combine step: compute 𝑝 𝑥 = 𝑝# 𝑥% + 𝑥 ⋅ 𝑝! 𝑥% for all 𝑥 ∈ 𝑋

• 𝑋 = 𝑁 ⟹ 𝑇 𝑁 ≤ 2 ⋅ 𝑇 ⁄7 % + 𝑂(𝑁)

𝑻 𝑵 = 𝑶 𝑵 ⋅ 𝐥𝐨𝐠𝑵

Faster Multiplication of Polynomials?

Observation: Multiplication is fast when using the point-value representation

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2×2𝑛 point-value pairs 𝜔%": , 𝑝 𝜔%": and 𝜔%": , 𝑞 𝜔%":

2𝑛 point-value pairs 𝜔%": , 𝑝 𝜔%": ⋅ 𝑞 𝜔%":

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝜔%"# , 𝜔%"! , … , 𝜔%"%"(!

Point-wise multiplication

Interpolation

Time: 𝑂(𝑛 ⋅ log 𝑛)

Time: 𝑂(𝑛)

???

Discrete Fourier Transform

• The values 𝑝 𝜔7: for 𝑘 = 0,… ,𝑁 − 1 uniquely define a polynomial 𝑝 of degree < 𝑁.

Discrete Fourier Transform (DFT):
• Assume 𝒂 = 𝑎#, … , 𝑎7(! is the coefficient vector of a polynomial 𝑝 (of degree ≤ 𝑁 − 1):

𝑝 𝑥 = 𝑎7(!𝑥7(! +⋯+ 𝑎!𝑥 + 𝑎#

• Then, the Discrete Fourier Transform of the vector 𝒂 is defined as

𝐃𝐅𝐓𝑵 𝒂 ≔ 𝒑 𝝎𝑵
𝟎 , 𝒑 𝝎𝑵

𝟏 , … , 𝒑 𝝎𝑵
𝑵)𝟏

We abuse notation and
also write 𝐃𝐅𝐓𝑵 𝒑

Discrete Fourier Transform : Example

Consider polynomial 𝑝 𝑥 = 3𝑥+ − 15𝑥% + 18𝑥 and choose 𝑁 = 4

Complex roots of unity:
• 𝜔3 = 𝑒 $678 < = 𝑒)⋅ ⁄A % = 𝑖
• 𝜔3# = 1, 𝜔3!= 𝑖, 𝜔3%= −1, 𝜔3+= −𝑖

Evaluate 𝑝(𝑥) at 𝜔3#, … , 𝜔3+:

𝜔3#, 𝑝 𝜔3# = 1, 𝑝 1 = 1,6

𝜔3!, 𝑝 𝜔3! = 𝑖, 𝑝 𝑖 = 𝑖, 15 + 15𝑖

𝜔3%, 𝑝 𝜔3% = −1, 𝑝 −1 = −1,−36

𝜔3+, 𝑝 𝜔3+ = −𝑖, 𝑝 −𝑖 = −𝑖, 15 − 15𝑖

• For 𝑎 = 0,18,−15,3 : 𝐃𝐅𝐓𝟒 𝒂 = (𝟔, 𝟏𝟓 + 𝟏𝟓𝒊,−𝟑𝟔, 𝟏𝟓 − 𝟏𝟓𝒊)

𝝎𝟒
𝟎 = 𝟏

𝝎𝟒
𝟏 = 𝒊

𝝎𝟒
𝟐 = −𝟏

𝝎𝟒
𝟑 = −𝒊

1. Divide

𝑁 ≤ 1: DFT7 𝑝 = 𝑎#
𝑁 > 1: Divide 𝑝 into 𝑝# (even coefficients)
 and 𝑝! (odd coefficients).

2. Conquer

Solve DFT ⁄7 % 𝑝# and DFT ⁄7 % 𝑝! recursively

3. Combine

Compute DFT7(𝑝) based on
DFT ⁄7 %(𝑝#) and DFT ⁄7 % 𝑝! .

Computing of DFT : Summary

23. Oktober 2024 29

Divide-and-conquer algorithm for DFT7(𝑝) for some poly. 𝑝 with 𝑁 coefficients 𝑎#, … , 𝑎7(!:

Evaluation for 𝒌 = 𝟎,… ,𝑵 − 𝟏:

DFT7 𝑝 = 𝑝 𝜔7# , 𝑝 𝜔7! , … , 𝑝 𝜔77(!

𝑝 𝜔7: = 𝑝# (𝜔7:)% + 𝜔7: ⋅ 𝑝! (𝜔7:)%

= q
𝑝# 𝜔 ⁄7 %

: + 𝜔7: ⋅ 𝑝! 𝜔 ⁄7 %
: if 𝑘 < ⁄7 %

𝑝# 𝜔 ⁄7 %
:(⁄7 % + 𝜔7: ⋅ 𝑝! 𝜔 ⁄7 %

:(⁄7 % if 𝑘 ≥ ⁄7 %

Small Constant Improvement

Polynomial 𝒑 of degree 𝑵− 𝟏:

𝑝 𝜔7: = q
𝑝# 𝜔 ⁄7 %

: + 𝜔7: ⋅ 𝑝! 𝜔 ⁄7 %
: if 𝑘 < r𝑁 2

𝑝# 𝜔 ⁄7 %
:(⁄7 % + 𝜔7: ⋅ 𝑝! 𝜔 ⁄7 %

:(⁄7 % if 𝑘 ≥ r𝑁 2

= q
𝑝# 𝜔 ⁄7 %

: + 𝜔7: ⋅ 𝑝! 𝜔 ⁄7 %
: if 𝑘 < r𝑁 2

𝑝# 𝜔 ⁄7 %
:(⁄7 % − 𝜔7

:(⁄7 % ⋅ 𝑝! 𝜔 ⁄7 %
:(⁄7 % if 𝑘 ≥ r𝑁 2

• 𝜔7
:(⁄7 % = 𝑒

678
9 ⋅ :(⁄9 6 = 𝑒

678
9 ⋅: ⋅ 𝑒(

678
9 ⋅96 = 𝜔7: ⋅ 𝑒(A) = −𝜔7:

Need to compute 𝑝# 𝜔 ⁄7 %
: and 𝜔7: ⋅ 𝑝! 𝜔 ⁄7 %

: for 0 ≤ 𝑘 < ⁄7 %.

Example 𝑵 = 𝟖

𝑝 𝜔*+ = 𝑝+ 𝜔,+ +𝜔*+ ⋅ 𝑝- 𝜔,+

𝑝 𝜔*- = 𝑝+ 𝜔,- +𝜔*- ⋅ 𝑝-(𝜔,-)

𝑝 𝜔*(= 𝑝+ 𝜔,(+𝜔*(⋅ 𝑝-(𝜔,()

𝑝 𝜔*. = 𝑝+ 𝜔,. +𝜔*. ⋅ 𝑝-(𝜔,.)

𝑝 𝜔*, = 𝑝+ 𝜔,+ −𝜔*+ ⋅ 𝑝-(𝜔,+)

𝑝 𝜔*/ = 𝑝+ 𝜔,- −𝜔*- ⋅ 𝑝-(𝜔,-)

𝑝 𝜔*0 = 𝑝+ 𝜔,(−𝜔*(⋅ 𝑝-(𝜔,()

𝑝 𝜔*1 = 𝑝+ 𝜔,. −𝜔*. ⋅ 𝑝-(𝜔,.)

𝑎 is coefficient vector
of polynomial 𝑝
of degree 𝑁 − 1

Divide-and-conquer algorithm to compute the Discrete Fourier Transform
• A highly relevant algorithm in practice with many applications

Algorithm FFT(a) (input: array 𝑎 of length 𝑁, where 𝑁 is a power of 2, output: DFT7 𝑎)
if 𝑛 = 1 then return 𝑎# // 𝑎 = 𝑎#

𝑑 # ≔ FFT 𝑎#, 𝑎%, … , 𝑎7(% ; // recursive computation of DFT ⁄7 % 𝑎MNM"
𝑑 ! ≔ FFT 𝑎!, 𝑎+, … , 𝑎7(! ; // recursive computation of DFT ⁄7 % 𝑎OHH

𝜔7 ≔ 𝑒 $')*
(; 𝜔 ≔ 1; // initialize 𝜔 to 𝜔 = 𝜔7# = 1

for 𝑘 = 0 to ⁄7 %− 1 do
𝑥 ≔ 𝜔 ⋅ 𝑑:

! ;
𝑑: ≔ 𝑑:

+ 𝑥; 𝑑:I ⁄7 % ≔ 𝑑:
− 𝑥; // compute 𝑑: = 𝑝 𝜔7: and 𝑑:I ⁄7 % = 𝑝 𝜔7

:I ⁄7 %

𝜔 ≔ 𝜔 ⋅ 𝜔7 // update 𝜔 to 𝜔 = 𝜔7:

return 𝑑 = [𝑑#, 𝑑!, … , 𝑑7(!];

Fast Fourier Transform (FFT) Algorithm

Faster Multiplication of Polynomials?

Observation: Multiplication is fast when using the point-value representation

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2×2𝑛 point-value pairs 𝜔%": , 𝑝 𝜔%": and 𝜔%": , 𝑞 𝜔%":

2𝑛 point-value pairs 𝜔%": , 𝑝 𝜔%": ⋅ 𝑞 𝜔%":

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝜔%"# , 𝜔%"! , … , 𝜔%"%"(!

Point-wise multiplication

Interpolation

Time: 𝑂(𝑛 ⋅ log 𝑛)

Time: 𝑂(𝑛)

Interpolation

Goal: Convert point-value representation into coefficient representation

Input: 𝑥#, 𝑦# , … , 𝑥"(!, 𝑦"(! with 𝑥) ≠ 𝑥* for 𝑖 ≠ 𝑗

Output:

Degree-(𝑛 − 1) polynomial with coefficients 𝑎#, … , 𝑎"(! such that

𝑝 𝑥# = 𝑎# + 𝑎! ⋅ 𝑥# + 𝑎% ⋅ 𝑥#% +⋯+ 𝑎"(! ⋅ 𝑥#"(!= 𝑦#
𝑝 𝑥! = 𝑎# + 𝑎! ⋅ 𝑥! + 𝑎% ⋅ 𝑥!% +⋯+ 𝑎"(! ⋅ 𝑥!"(!= 𝑦!

⋮ ⋮
𝑝 𝑥"(! = 𝑎# + 𝑎! ⋅ 𝑥"(! + 𝑎% ⋅ 𝑥"(!% +⋯+ 𝑎"(! ⋅ 𝑥"(!"(!= 𝑦"(!

à linear system of equations for 𝑎#, … , 𝑎"(!

Interpolation

Matrix Notation:

1 𝑥# ⋯ 𝑥#"(!

1 𝑥! ⋯ 𝑥!"(!
⋮ ⋮ ⋱ ⋮
1 𝑥"(! ⋯ 𝑥"(!"(!

⋅

𝑎#
𝑎!
⋮

𝑎"(!

=

𝑦#
𝑦!
⋮

𝑦"(!

• System of equations solvable iff 𝑥) ≠ 𝑥* for all 𝑖 ≠ 𝑗

Special Case 𝒙𝒊 = 𝝎𝒏
𝒊 :
1 1 1 ⋯ 1
1 𝜔" 𝜔"% ⋯ 𝜔""(!

1 𝜔"% 𝜔"3 ⋯ 𝜔"
%("(!)

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔""(! 𝜔"

% "(! ⋯ 𝜔"
("(!)("(!)

⋅

𝑎#
𝑎!
𝑎%
⋮

𝑎"(!

=

𝑦#
𝑦!
𝑦%
⋮

𝑦"(!

Interpolation

Linear system:
𝑊 ⋅ 𝒂 = 𝒚 ⟹ 𝒂 = 𝑊(! ⋅ 𝒚

𝑊),* = 𝜔"
)* , 𝒂 =

𝑎#
⋮

𝑎"(!
, 𝒚 =

𝑦#
⋮

𝑦"(!

Claim:

𝑾𝒊,𝒋
(𝟏 =

𝝎𝒏
(𝒊𝒋

𝒏

Proof: Need to show that 𝑊(!𝑊 = 𝐼"

DFT Matrix Inverse

𝑊(!𝑊 =

⋯
1
𝑛

𝜔"()

𝑛
⋯

𝜔"
("(!)

𝑛
⋮
⋯

⋅

⋯ 1 ⋯
⋯ 𝜔"

* ⋯
⋯ 𝜔"

%* ⋯
⋮

⋯ 𝜔"
"(! * ⋯

𝑊(!𝑊),* = z
ℓ/#

"(!
𝜔"(ℓ) ⋅ 𝜔"

ℓ*

𝑛 = z
ℓ/#

"(!
𝜔"
ℓ(*())

𝑛

We need to show that
• 𝑊(!𝑊),* = 1 for 𝑖 = 𝑗
• 𝑊(!𝑊),* = 0 for 𝑖 ≠ 𝑗

DFT Matrix Inverse

𝑊(!𝑊),* = z
ℓ/#

"(!
𝜔"
ℓ(*())

𝑛

Need to show 𝑊(!𝑊),* = {1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Case 𝒊 = 𝒋:

𝑊(!𝑊),) = z
ℓ/#

"(!
𝜔"
ℓ()())

𝑛 = z
ℓ/#

"(!
𝜔"#

𝑛 = 𝑛 ⋅
1
𝑛 = 1

DFT Matrix Inverse

𝑊(!𝑊),* = z
ℓ/#

"(!
𝜔"
ℓ(*())

𝑛

Need to show 𝑊(!𝑊),* = {1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Case 𝒊 ≠ 𝒋:

𝑊(!𝑊),* = z
ℓ/#

"(!
𝜔"
ℓ(*())

𝑛 =
1
𝑛 ⋅ z

ℓ/#

"(!

𝜔"
*() ℓ

=
1 − 𝜔"

" *()

1 − 𝜔"
*() = 0

Geometric series: z
ℓ/#

"(!

𝑞ℓ =
1 − 𝑞"

1 − 𝑞

𝜔223 = 𝜔-3 = 1

≠ 1

Inverse Discrete Fourier Transform

𝑊(! =

⋯
1
𝑛

𝜔"(:

𝑛
⋯

𝜔"
("(! :

𝑛
⋮
⋯

We get 𝒂 = 𝑊(! ⋅ 𝒚 and therefore

𝑎: =
1
𝑛

𝜔"(:

𝑛
⋯

𝜔"
("(! :

𝑛
⋅

𝑦#
𝑦!
⋮

𝑦"(!

=
1
𝑛 ⋅ z

*/#

"(!

𝜔"
(:* ⋅ 𝑦* =

1
𝑛 ⋅ z

*/#

"(!

𝑦* ⋅ 𝜔"(:
*

