
Algorithm Theory – WS 2024/25

Chapter 1 : Divide and Conquer Algorithms

(Multiplication of Polynomials, remaining part)

Fabian Kuhn

Dept. of Computer Science

Algorithms and Complexity



Discrete Fourier Transform

• The values 𝑝 𝜔𝑁
𝑘 for 𝑘 = 0,… ,𝑁 − 1 uniquely define a polynomial 𝑝 of degree < 𝑁.

Discrete Fourier Transform (DFT):

• Assume 𝒂 = 𝑎0, … , 𝑎𝑁−1 is the coefficient vector of a polynomial 𝑝 (of degree ≤ 𝑁 − 1):

𝑝 𝑥 = 𝑎𝑁−1𝑥
𝑁−1 +⋯+ 𝑎1𝑥 + 𝑎0

• Then, the Discrete Fourier Transform of the vector 𝒂 is defined as

𝐃𝐅𝐓𝑵 𝒂 ≔ 𝒑 𝝎𝑵
𝟎 , 𝒑 𝝎𝑵

𝟏 , … , 𝒑 𝝎𝑵
𝑵−𝟏

We abuse notation and 

also write 𝐃𝐅𝐓𝑵 𝒑

The values 𝜔𝑁
0 , 𝜔𝑁

1 , … , 𝜔𝑁
𝑁−1

are the 𝑁 complex solutions to 

the equation 𝑥𝑁 = 1.

𝜔𝑁
𝑘 = 𝑒 Τ2𝜋𝑖⋅𝑘 𝑁

𝝎𝟖
𝟏

𝝎𝟖
𝟐

𝝎𝟖
𝟑

𝝎𝟖
𝟒

𝝎𝟖
𝟓

𝝎𝟖
𝟔

𝝎𝟖
𝟕

𝝎𝟖
𝟎 = 𝟏



Faster Multiplication of Polynomials?

Observation: Multiplication is fast when using the point-value representation

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 ⋅ 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1

Point-wise multiplication

Interpolation

Time: 𝑂(𝑛 ⋅ log 𝑛)

Time: 𝑂(𝑛)

???



Interpolation

Goal: Convert point-value representation into coefficient representation

Input: 𝑥0, 𝑦0 , … , 𝑥𝑛−1, 𝑦𝑛−1 with 𝑥𝑖 ≠ 𝑥𝑗 for 𝑖 ≠ 𝑗

Output: 

Degree-(𝑛 − 1) polynomial with coefficients 𝑎0, … , 𝑎𝑛−1 such that

𝑝 𝑥0 = 𝑎0 + 𝑎1 ⋅ 𝑥0 + 𝑎2 ⋅ 𝑥0
2 +⋯+ 𝑎𝑛−1 ⋅ 𝑥0

𝑛−1= 𝑦0
𝑝 𝑥1 = 𝑎0 + 𝑎1 ⋅ 𝑥1 + 𝑎2 ⋅ 𝑥1

2 +⋯+ 𝑎𝑛−1 ⋅ 𝑥1
𝑛−1= 𝑦1

⋮ ⋮
𝑝 𝑥𝑛−1 = 𝑎0 + 𝑎1 ⋅ 𝑥𝑛−1 + 𝑎2 ⋅ 𝑥𝑛−1

2 +⋯+ 𝑎𝑛−1 ⋅ 𝑥𝑛−1
𝑛−1= 𝑦𝑛−1

→ linear system of equations for 𝑎0, … , 𝑎𝑛−1



Interpolation

Matrix Notation:

1 𝑥0 ⋯ 𝑥0
𝑛−1

1 𝑥1 ⋯ 𝑥1
𝑛−1

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛−1 ⋯ 𝑥𝑛−1

𝑛−1

⋅

𝑎0
𝑎1
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
⋮

𝑦𝑛−1

• System of equations solvable iff 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗

Special Case 𝒙𝒊 = 𝝎𝒏
𝒊 :

1 1 1 ⋯ 1
1 𝜔𝑛 𝜔𝑛

2 ⋯ 𝜔𝑛
𝑛−1

1 𝜔𝑛
2 𝜔𝑛

4 ⋯ 𝜔𝑛
2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮

1 𝜔𝑛
𝑛−1 𝜔𝑛

2 𝑛−1
⋯ 𝜔𝑛

(𝑛−1)(𝑛−1)

⋅

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
𝑦2
⋮

𝑦𝑛−1



Interpolation

Linear system:

𝑊 ⋅ 𝒂 = 𝒚 ⟹ 𝒂 = 𝑊−1 ⋅ 𝒚

𝑊𝑖,𝑗 = 𝜔𝑛
𝑖𝑗
, 𝒂 =

𝑎0
⋮

𝑎𝑛−1
, 𝒚 =

𝑦0
⋮

𝑦𝑛−1

Claim:

𝑾𝒊,𝒋
−𝟏 =

𝝎𝒏
−𝒊𝒋

𝒏

Proof: Need to show that 𝑊−1𝑊 = 𝐼𝑛



Inverse Discrete Fourier Transform

𝑊−1 =

⋯

1

𝑛

𝜔𝑛
−𝑘

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑘

𝑛
⋮
⋯

We get 𝒂 = 𝑊−1 ⋅ 𝒚 and therefore

𝑎𝑘 =
1

𝑛

𝜔𝑛
−𝑘

𝑛
⋯

𝜔𝑛
− 𝑛−1 𝑘

𝑛
⋅

𝑦0
𝑦1
⋮

𝑦𝑛−1

=
1

𝑛
⋅ ෍

𝑗=0

𝑛−1

𝜔𝑛
−𝑘𝑗

⋅ 𝑦𝑗 =
1

𝑛
⋅ ෍

𝑗=0

𝑛−1

𝑦𝑗 ⋅ 𝜔𝑛
−𝑘 𝑗



DFT and Inverse DFT

Inverse DFT:

𝑎𝑘 =
1

𝑛
⋅ ෍

𝑗=0

𝑛−1

𝑦𝑗 ⋅ 𝜔𝑛
−𝑘 𝑗

• Define polynomial 𝑞 𝑥 = 𝑦0 + 𝑦1𝑥 + ⋯+ 𝑦𝑛−1𝑥
𝑛−1:

𝑎𝑘 =
1

𝑛
⋅ 𝑞(𝜔𝑛

−𝑘)

DFT:

• Polynomial 𝑝 𝑥 = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛−1𝑥
𝑛−1:

𝑦𝑘 = 𝑝(𝜔𝑛
𝑘)



DFT and Inverse DFT

𝑞 𝑥 = 𝑦0 + 𝑦1𝑥 + ⋯+ 𝑦𝑛−1𝑥
𝑛−1, 𝑎𝑘 =

1

𝑛
⋅ 𝑞 𝜔𝑛

−𝑘 :

Therefore:

𝑎0, 𝑎1, … , 𝑎𝑛−1

=
1

𝑛
⋅ 𝑞 𝜔𝑛

−0 , 𝑞 𝜔𝑛
−1 , 𝑞 𝜔𝑛

−2 , … , 𝑞 𝜔𝑛
− 𝑛−1

=
1

𝑛
⋅ 𝑞 𝜔𝑛

0 , 𝑞 𝜔𝑛
𝑛−1 , 𝑞 𝜔𝑛

𝑛−2 , … , 𝑞 𝜔𝑛
1

Recall:

DFT𝑛 𝒚 = 𝑞 𝜔𝑛
0 , 𝑞 𝜔𝑛

1 , 𝑞 𝜔𝑛
2 , … , 𝑞 𝜔𝑛

𝑛−1

= 𝑛 ⋅ (𝑎0, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎2, 𝑎1)



DFT and Inverse DFT

• We have DFT𝑛(𝒚) = 𝑛 ⋅ (𝑎0, 𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎2, 𝑎1):

𝑎𝑖 =

1

𝑛
⋅ DFT𝑛(𝒚) 0 if 𝑖 = 0

1

𝑛
⋅ DFT𝑛(𝒚) 𝑛−𝑖 if 𝑖 ≠ 0

• DFT and inverse DFT can both be computed using the FFT algorithm in 𝑂 𝑛 log 𝑛 time.

• Hence, two polynomials of degree < 𝑛 can be multiplied in time 𝑂(𝑛 log 𝑛).



Faster Multiplication of Polynomials

Observation: Multiplication is fast when using the point-value representation

Idea to compute 𝑝 𝑥 ⋅ 𝑞(𝑥) (for polynomials of degree < 𝑛):

𝑝, 𝑞 of degree 𝑛 − 1, 𝑛 coefficients

2 × 2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 and 𝜔2𝑛
𝑘 , 𝑞 𝜔2𝑛

𝑘

2𝑛 point-value pairs 𝜔2𝑛
𝑘 , 𝑝 𝜔2𝑛

𝑘 ⋅ 𝑞 𝜔2𝑛
𝑘

𝑝 𝑥 𝑞(𝑥) of degree 2𝑛 − 2, 2𝑛 − 1 coefficients

Evaluation at points 𝜔2𝑛
0 , 𝜔2𝑛

1 , … , 𝜔2𝑛
2𝑛−1 using FFT in time 𝑂(𝑛 log 𝑛)

Point-wise multiplication in time 𝑂(𝑛)

Interpolation using FFT in time 𝑂(𝑛 log 𝑛)



Convolution

• More generally, the polynomial multiplication algorithm computes the convolution of two vectors:

𝒂 = 𝑎0, 𝑎1, … , 𝑎𝑚−1

𝒃 = 𝑏0, 𝑏1, … , 𝑏𝑛−1

𝒂 ∗ 𝒃 = 𝑐0, 𝑐1, … , 𝑐𝑚+𝑛−2 ,

where 𝑐𝑘= ෍

(𝑖,𝑗):𝑖+𝑗=𝑘
𝑖<𝑚,𝑗<𝑛

𝑎𝑖𝑏𝑗

• 𝑐𝑘 is exactly the coefficient of 𝑥𝑘 in the product polynomial of the polynomials defined by the 

coefficient vectors 𝒂 and 𝒃



More Applications of Convolutions

Signal Processing Example:

• Assume 𝒂 = 𝑎0, … , 𝑎𝑛−1 represents a sequence of measurements over time

• Measurements might be noisy and have to be smoothed out

• Replace 𝑎𝑖 by weighted average of nearby last 𝑚 and next 𝑚 measurements

(e.g., Gaussian smoothing):

𝑎𝑖
′ =

1

𝑍
⋅ ෍

𝑗=𝑖−𝑚

𝑖+𝑚

𝑎𝑗𝑒
− 𝑖−𝑗 2

• New vector 𝒂′ is the convolution of 𝒂 and the weight vector
1

𝑍
⋅ 𝑒−𝑚

2
, 𝑒− 𝑚−1 2

, … , 𝑒−1, 1, 𝑒−1, … , 𝑒− 𝑚−1 2
, 𝑒−𝑚

2

• Might need to take care of boundary points…



More Applications of Convolutions

Combining Histograms:

• Vectors 𝒂 and 𝒃 represent two histograms

• E.g., annual income of all men & annual income of all women

• Goal: Get new histogram 𝒄 representing combined income of all possible pairs of men and women:

𝒄 = 𝒂 ∗ 𝒃

Also, the DFT by itself has many other applications!

• e.g., in particular in signal processing when moving between time and frequency domain…


