universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 2 : Greedy Algorithms

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Greedy Algorithms

No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

• **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

- Goal: Select largest possible non-overlapping set of intervals
 - For simplicity: overlap at boundary ok (i.e., [4,7] and [7,9] are non-overlapping)
- Example: Intervals are room requests; satisfy as many as possible

Greedy Algorithms

Several possibilities...

Choose first available interval:

Choose shortest available interval:

Greedy Algorithms

Choose available request with earliest finishing time:

Earliest Finishing Time is Optimal

- Let O be the set of intervals of an optimal solution
- Can we show that S = 0?
 - No...

• Show that |S| = |O|.

Or alternatively: $|S| \ge |O|$ for any other solution O.

Greedy Stays Ahead

• Greedy solution *S*:

$$[\underline{a_1}, b_1], [\underline{a_2}, \underline{b_2}], \dots, [\underline{a_{|S|}}, \underline{b_{|S|}}], \quad \text{where } \underline{b_i} \leq \underline{a_{i+1}}$$

• Some optimal solution *O*:

$$[a_1^*, b_1^*], [a_2^*, b_2^*], \dots, [a_{|O|}^*, b_{|O|}^*], \quad \text{where } b_i^* \le a_{i+1}^*$$

• Define $b_i \coloneqq \infty$ for i > |S| and $b_i^* \coloneqq \infty$ for i > |O|

Claim: $\forall i \geq 1, \underline{b_i} \leq \underline{b_i^*}$ $\implies |S| \geq |O|$ because $b_{|O|} \leq b_{|O|}^* < \infty$

Greedy Stays Ahead

Claim: For all $i \geq 1$, $b_i \leq b_i^*$

Proof (by induction on i):

Base case i=1: $b_1 \leq b_1^*$

Step $i-1 \rightarrow i$: Induction Hypothesis: $b_{i-1} \leq b_{i-1}^*$

Corollary: Earliest finishing time algorithm is optimal.

Need to show that $b_i \leq b_i^*$:

Blue interval is available to greedy algorithm because

$$b_{i-1} \le b_{i-1}^* \le a_i^*$$

Greedy would prefer blue interval if $b_i^* < b_i$.

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

We will see an algorithm using another design technique later.

Interval Partitioning

- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
 - Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
 - Intervals are requests to use some room during this time
 - Assign all requests to some room such that there are no conflicts
 - Use as few rooms as possible
- Assignment to 3 resources:

Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
 - Because we allow intervals to overlap at the boundaries, "passing" means in the inside of the interval.

• Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

Lemma: Number of resources needed ≥ depth

• Follows directly from definition of depth.

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assign labels 1, ... to the intervals; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: $I_1, I_2, ..., I_n$
- 2. for i = 1 to n do
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_i , j < i)
- 4. end

Interval Partitioning Algorithm

Example:

• Labels:

• Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let d be the depth of the given set of intervals. The algorithm assigns a label from 1, ..., d to each interval.
- b) Sets with the same label are non-overlapping

Proof:

• b) holds by construction

• For a): All intervals I_j , j < i overlapping with I_i , overlap at the beginning of I_i

• At most d-1 such intervals \rightarrow some label in $\{1, ..., d\}$ is available.

Traveling Salesperson Problem (TSP)

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v): dist. from u to v
- Distances usually symmetric, asymm. distances → asymm. TSP

Solution:

• Ordering/permutation $v_1, v_2, ..., v_n$ of nodes:

- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_n, v_1) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Example

Greedy Algorithm

Length: 121

Optimal Tour

Length: 86

Nearest Neighbor (Greedy)

• Nearest neighbor can be arbitrarily bad, even for TSP paths

TSP Variants

- Asymmetric TSP
 - arbitrary non-negative distance function
 - most general, nearest neighbor arbitrarily bad
 - NP-hard to get within any bound of optimum
- Symmetric TSP
 - arbitrary non-negative symmetric distance function
 - nearest neighbor arbitrarily bad
 - NP-hard to get within any bound of optimum
- Metric TSP
 - distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u,v) \le d(u,w) + d(w,v)$
 - possible to get close to optimum (we will later see how to get a factor $^3/_2$)
 - what about the nearest neighbor algorithm?

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Optimal TSP tour:

Nearest-Neighbor TSP tour:

cost = 24

marked red edges : some arrow to it

green edges ≥ marked red ed.

OPT part of greedy solution (NN)

#marked red edges:

At least half of the red edges are marked.

Triangle Inequality:

optimal tour on remaining nodes
(Short cut → our) ≤

overall optimal tour

 $marked \ red \leq OPT$

Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
 - Cost of greedy edge ≤ cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
 - At least half of the greedy edges get assigned
- At end of phase:
 - Remove nodes for which greedy edge is assigned Consider optimal solution for remaining points
- Triangle inequality: remaining opt. solution \leq overall opt. sol.
- Cost of greedy edges assigned in each phase ≤ opt. cost
- Number of phases $\leq \log_2 n$
 - +1 for last greedy edge in tour

• Assume:

NN: cost of greedy tour, OPT: cost of optimal tour

• We have shown:

last red edge #phases $\frac{NN}{OPT} \le 1 + \log_2 n$ approximation ratio

$$(\underline{\underline{NN}} \le (\underline{1 + \log_2 n}) \cdot \underline{OPT})$$

- Example of an approximation algorithm
- We will later see a $\frac{3}{2}$ -approximation algorithm for metric TSP

Back to Scheduling

• Given: *n* requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
 - Schedule: $\underline{s(i)}$, $\underline{f(i)}$: start and finishing times of request iNote: $\underline{f(i)} = \underline{s(i)} + t_i$
 - Lateness L_i of request $i: L_i := \max\{0, f(i) d_i\}$
- Lateness $L := \max_{i} \{0, \max_{i} \{f(i) d_i\}\} = \max_{i} L_i$
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic...

$$t_1 = 10$$
 deadline $d_1 = 10$ \dots $d_2 = 100$

Schedule:
$$t_2 = 2$$
 $t_1 = 10$

Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$

$$t_1 = 10$$

$$t_2 = 2$$

$$d_2 = 3$$

Schedule:

$$t_1 = 10 \qquad \qquad \left(\right) t_2 = 2 \left(\right)$$

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $d_1 \le d_2 \le \cdots \le d_n$
- Start/finishing times:
 - First job starts at time $\underline{s(1)} = \underline{0}$
 - Duration of job *i* is t_i : $f(i) = \underline{s(i)} + \underline{t_i}$
 - No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule → alg. gives schedule with no idle time)

Example

$$t_1 = 5$$

$$(\mathbf{1})d_1 = 7$$

$$t_2 = 3$$

$$d_2 = 10$$

$$\iota_3$$

2

3

$$t_3 = 7 d_3 = 1$$

$$t_4 = 3$$

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...
- 2. Inversion: Job i scheduled before job j and $d_i > d_j$ Schedules with no inversions have the same maximum lateness

maximum lateness of green jobs with deadline 13

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider some schedule O' with no idle time
- If \mathcal{O}' has inversions, \exists pair (i,j), s.t. i is scheduled immediately before j and $d_i < d_i$

- Claim: Swapping i and j gives a schedule with
 - 1. Fewer inversions
 - 2. Maximum lateness no larger than in \mathcal{O}'

Earliest Deadline is Optimal

Claim: Swapping i and j: maximum lateness no larger than in \mathcal{O}'

Lateness
$$L_j = \max\{0, t - d_j\}$$

Max. lateness after swap:

$$L_i' = \max\{0, t - d_i\} \le L_j$$

$$L_j' = \max\{0, L_j - t_i\} \le L_j$$

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...