universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 2 : Greedy Algorithms

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Greedy Algorithms

• No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
	- Optimal solutions
	- Close to optimal solutions
	- No (reasonable) solutions at all
- If it works, very interesting approach!
	- And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

• **Given:** Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

- **Goal:** Select largest possible non-overlapping set of intervals
	- For simplicity: overlap at boundary ok $(i.e., [4,7]$ and $[7,9]$ are non-overlapping)
- **Example:** Intervals are room requests; satisfy as many as possible

universität freiburg

Greedy Algorithms

- Several possibilities…
- **Choose first available interval:**

Choose shortest available interval:

universitätfreiburg

Greedy Algorithms

Choose available request with earliest finishing time:


```
R \coloneqq set of all requests; S \coloneqq empty set;
while R is not empty do
   choose r \in R with smallest finishing time
   add r to Sdelete all requests from R that are not compatible with rend // S is the solution
```
Earliest Finishing Time is Optimal

- Let O be the set of intervals of an optimal solution
- Can we show that $S = 0$?

• Show that $|S| = |O|$.

Or alternatively: $|S| \geq |O|$ for any other solution O .

Greedy Stays Ahead

• Greedy solution S :

$$
[a_1, b_1], [a_2, b_2], \dots, [a_{|S|}, b_{|S|}], \qquad \text{where } \underline{b_i} \le \underline{a_{i+1}}
$$

• Some optimal solution O :

$$
[a_1^*, b_1^*], [a_2^*, b_2^*], \dots, [a_{|O|}^*, b_{|O|}^*], \qquad \text{where } b_i^* \le a_{i+1}^*
$$

• Define $b_i := \infty$ for $i > |S|$ and $b_i^* := \infty$ for $i > |O|$

universität freiburg

Greedy Stays Ahead

Claim: For all $i \geq 1$, $b_i \leq b_i^*$

Proof (by induction on i):

Base case $i = 1$ **:**

 $$

Step $i - 1 \rightarrow i$: lnduction Hypothesis: $b_{i-1} \le b_{i-1}^*$ **:** $i-1$ $b_{i-1}^* a_i^*$ i $\frac{1}{i}$ $\frac{1}{i}$ ∗

Corollary: Earliest finishing time algorithm is optimal.

 b_{i-1}

 $S:$ $i-1$

Need to show that $b_i \leq b_i^*$:

Blue interval is available to greedy algorithm because $b_{i-1} \leq b_{i-1}^* \leq a_i^*$

Greedy would prefer blue interval if $b_i^* < b_i$.

universität freiburg

 \boldsymbol{i}

 \dot{a}_i b_i

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight…

No simple greedy algorithm:

• We will see an algorithm using another design technique later.

Interval Partitioning

- **Schedule all intervals**: Partition intervals into as few as possible non-overlapping sets of intervals
	- Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
	- Intervals are requests to use some room during this time
	- Assign all requests to some room such that there are no conflicts
	- Use as few rooms as possible
- Assignment to 3 resources:

Depth of a set of intervals:

- Maximum number passing over a single point in time
	- Because we allow intervals to overlap at the boundaries, "passing" means in the inside of the interval.
- Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

Lemma: Number of resources needed ≥ depth

• Follows directly from definition of depth.

universität freiburg

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

• Would mean that the only obstacles to partitioning are local…

Algorithm:

- Assign labels 1, ... to the intervals; same label \rightarrow non-overlapping
- 1. sort intervals by starting time: $I_1, I_2, ..., I_n$
- 2. **for** $i = 1$ **to** n **do**
- 3. assign smallest possible label to I_i (possible label: different from conflicting intervals I_i , $j < i$)
- 4. **end**

Interval Partitioning Algorithm

• Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

- a) Let d be the depth of the given set of intervals. The algorithm assigns a label from $1, ..., d$ to each interval.
- b) Sets with the same label are non-overlapping

Traveling Salesperson Problem (TSP)

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., $d(u, v)$: dist. from u to v
- Distances usually symmetric, asymm. distances \rightarrow asymm. TSP

Solution:

• Ordering/permutation $v_1, v_2, ..., v_n$ of nodes:

• Length of TSP tour: $d(v_n, v_1) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

• Minimize length of TSP path or TSP tour

universität freiburg

 v_2 v_3 v_4 v_{n-1} v_n

Example

Greedy Algorithm

Length: 121

Optimal Tour Length: 86

Nearest Neighbor (Greedy)

• Nearest neighbor can be arbitrarily bad, even for TSP paths

universitätfreiburg

TSP Variants

- Asymmetric TSP
	- arbitrary non-negative distance function
	- most general, nearest neighbor arbitrarily bad
	- NP-hard to get within any bound of optimum
- Symmetric TSP
	- arbitrary non-negative symmetric distance function
	- nearest neighbor arbitrarily bad
	- NP-hard to get within any bound of optimum
- Metric TSP
	- distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u, v) \leq d(u, w) + d(w, v)$
	- possible to get close to optimum (we will later see how to get a factor $\frac{3}{2}$)
	- what about the nearest neighbor algorithm?

universitätfreiburg

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Optimal TSP tour:

Nearest-Neighbor TSP tour:

 $cost = 24$

marked red edges : some arrow to it

green edges ≥ marked red ed. **OPT part of greedy solution (NN)**

#marked red edges: At least half of the red edges are marked.

universitätfreiburg

Triangle Inequality:

optimal tour on remaining nodes ≤

overall optimal tour

green ≥ **marked red** ≤**OPT**

marked red ≤ **OPT**

Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
	- Cost of greedy edge \leq cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
	- At least half of the greedy edges get assigned
- At end of phase:

Remove nodes for which greedy edge is assigned Consider optimal solution for remaining points

- **Triangle inequality:** remaining opt. solution ≤ overall opt. sol.
- Cost of greedy edges assigned in **each phase** ≤ **opt. cost**
- **Number of phases** ≤
	- $+1$ for last greedy edge in tour

€

• Assume:

NN: cost of greedy tour, OPT: cost of optimal tour

• We have shown:

- Example of an **approximation algorithm**
- We will later see a $\frac{3}{2}$ -approximation algorithm for metric TSP

universitätfreiburg

Back to Scheduling

• Given: n requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
	- Schedule: $s(i)$, $f(i)$: start and finishing times of request i Note: $f(i) \equiv s(i) + t_i$
	- Lateness L_i of request $i : L_i := \max\{0, f(i) d_i\}$
- Lateness $L := \max\limits_{i} \big\{ 0, \ \max_{i} \{ f(i) d_i \} \big\} = \max_i$ L_i
	- largest amount of time by which some job finishes late
- Many other natural objective functions possible...

universitätfreiburg

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic…

Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$ $t_1 = 10$
 deadline $d_1 = 10$ $t_2 = 2$ $\left| \oint_2 = 3 \right|$ Schedule: $t_1 = 10$ $(|t_2 = 2|)$

universität freiburg

Fabian Kuhn – Algorithm Theory

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $d_1 \leq d_2 \leq \cdots \leq d_n$
- Start/finishing times:
	- First job starts at time $s(1) = 0$
	- Duration of job *i* is t_i : $f(i) = s(i) + t_i$
	- No gaps between jobs: $s(i + 1) = f(i)$

(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Schedule:

Basic Facts

- 1. There is an optimal schedule with no idle time
	- Can just schedule jobs earlier…
- 2. Inversion: Job *i* scheduled before job *j* and $d_i > d_j$ Schedules with no inversions have the same maximum lateness

maximum lateness of green jobs with deadline 13

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule $\mathcal O$ with no inversions and no idle time.

Proof:

- Consider some schedule \mathcal{O}' with no idle time
- If O' has inversions, \exists pair (i, j) , s.t. *i* is scheduled immediately before *j* and $d_i < d_i$

Earliest Deadline is Optimal

Claim: Swapping i and j : maximum lateness no larger than in O'

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite…