
Algorithm Theory – WS 2024/25

Chapter 2 : Greedy Algorithms

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Greedy Algorithms

• No clear definition, but essentially:

• Depending on problem, greedy algorithms can give
• Optimal solutions
• Close to optimal solutions
• No (reasonable) solutions at all

• If it works, very interesting approach!
• And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

In each step make the choice that
looks best at the moment!

Fabian Kuhn – Algorithm Theory 2

Interval Scheduling

• Given: Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Goal: Select largest possible non-overlapping set of intervals
• For simplicity: overlap at boundary ok

(i.e., [4,7] and [7,9] are non-overlapping)

• Example: Intervals are room requests; satisfy as many as possible

3

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Fabian Kuhn – Algorithm Theory

Greedy Algorithms

• Several possibilities…
Choose first available interval:

Choose shortest available interval:

4

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[6,9]

[1,7] [8,14]

[7,9] [9,12]

Fabian Kuhn – Algorithm Theory

Greedy Algorithms

Choose available request with earliest finishing time:

𝑅 ≔ set of all requests; 𝑆 ≔ empty set;
while 𝑅 is not empty do

choose 𝑟 ∈ 𝑅 with smallest finishing time
add 𝑟 to 𝑆
delete all requests from 𝑅 that are not compatible with 𝑟

end // 𝑆 is the solution

5

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[7,9]

[8,10] [12,14]

[1,3]

[3,5]

[5,8]

[11,14]

[8,10]

[9,12]

Fabian Kuhn – Algorithm Theory

Earliest Finishing Time is Optimal

• Let 𝑂 be the set of intervals of an optimal solution

• Can we show that 𝑆 = 𝑂?
• No…

• Show that 𝑆 = 𝑂 .

6

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Greedy Solution Alternative Optimal Sol.

Fabian Kuhn – Algorithm Theory

Or alternatively: 𝑆 ≥ 𝑂
for any other solution 𝑂.

Greedy Stays Ahead

• Greedy solution 𝑆:
𝑎1, 𝑏1 , 𝑎2, 𝑏2 , … , 𝑎 𝑆 , 𝑏 𝑆 , where 𝑏𝑖 ≤ 𝑎𝑖+1

• Some optimal solution 𝑂:
𝑎1∗, 𝑏1∗ , 𝑎2∗, 𝑏2∗ , … , 𝑎 𝑂

∗ , 𝑏 𝑂
∗ , where 𝑏𝑖∗ ≤ 𝑎𝑖+1∗

• Define 𝑏𝑖 ≔ ∞ for 𝑖 > |𝑆| and 𝑏𝑖∗ ≔ ∞ for 𝑖 > |𝑂|

Claim: ∀𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖∗

7

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

⟹ 𝑆 ≥ 𝑂 because 𝑏 𝑂 ≤ 𝑏 𝑂
∗ < ∞

Fabian Kuhn – Algorithm Theory

Greedy Stays Ahead

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖∗

Proof (by induction on 𝑖):

Base case 𝒊 = 𝟏 : 𝒃𝟏 ≤ 𝒃𝟏∗

Step 𝒊 − 𝟏 → 𝒊 : Induction Hypothesis: 𝒃𝒊−𝟏 ≤ 𝒃𝒊−𝟏∗

Corollary: Earliest finishing time algorithm is optimal.

8

𝑶:

𝑺: 𝑖 − 1

𝑖 − 1

𝑏𝑖−1

𝑏𝑖−1∗

𝑖

𝑎𝑖∗ 𝑏𝑖∗

𝑖

𝑎𝑖 𝑏𝑖

Need to show that 𝒃𝒊 ≤ 𝒃𝒊∗:

Blue interval is available to
greedy algorithm because

𝑏𝑖−1 ≤ 𝑏𝑖−1∗ ≤ 𝑎𝑖∗

Greedy would prefer blue
interval if 𝑏𝑖∗ < 𝑏𝑖.

Fabian Kuhn – Algorithm Theory

Weighted Interval Scheduling

Weighted version of the problem:
• Each interval has a weight
• Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:
• Algorithm needs to look at weights
• Else, the selected sets could be the ones with smallest weight…

No simple greedy algorithm:
• We will see an algorithm using another design technique later.

9Fabian Kuhn – Algorithm Theory

Interval Partitioning

• Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
• Assign intervals to different resources, where each resource needs to get a non-overlapping set

• Example:
• Intervals are requests to use some room during this time
• Assign all requests to some room such that there are no conflicts
• Use as few rooms as possible

• Assignment to 3 resources:

10

[1,3]

[1,4]

[2,4]

[4,7]

[5,8]

[5,12]

[9,11] [12,14]

[9,12]

Fabian Kuhn – Algorithm Theory

Depth

Depth of a set of intervals:
• Maximum number passing over a single point in time

• Because we allow intervals to overlap at the boundaries, “passing” means in the inside of the interval.

• Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

Lemma: Number of resources needed ≥ depth
• Follows directly from definition of depth.

11

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

depth = 𝟒

Fabian Kuhn – Algorithm Theory

Greedy Algorithm

Can we achieve a partition into “depth” non-overlapping sets?

• Would mean that the only obstacles to partitioning are local…

Algorithm:
• Assign labels 1,… to the intervals; same label → non-overlapping

1. sort intervals by starting time: 𝐼1, 𝐼2, … , 𝐼𝑛
2. for 𝑖 = 1 to 𝑛 do
3. assign smallest possible label to 𝐼𝑖

(possible label: different from conflicting intervals 𝐼𝑗, 𝑗 < 𝑖)
4. end

12Fabian Kuhn – Algorithm Theory

Interval Partitioning Algorithm

Example:
• Labels:

• Number of labels = depth = 4

13

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

[0,10][0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[5,12]

[7,9]

[8,10]

[9,12]

[11,14]

[12,14]

Fabian Kuhn – Algorithm Theory

Interval Partitioning: Analysis

Theorem:
a) Let 𝑑 be the depth of the given set of intervals.

The algorithm assigns a label from 1,… , 𝑑 to each interval.
b) Sets with the same label are non-overlapping

Proof:
• b) holds by construction
• For a): All intervals 𝐼𝑗, 𝑗 < 𝑖 overlapping with 𝐼𝑖,

overlap at the beginning of 𝐼𝑖

• At most 𝑑 − 1 such intervals → some label in {1, … , 𝑑} is available.
14

𝐼𝑖
𝐼𝑗1
𝐼𝑗2

𝐼𝑗3

Fabian Kuhn – Algorithm Theory

Traveling Salesperson Problem (TSP)

Input:
• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites)
• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣): dist. from 𝑢 to 𝑣
• Distances usually symmetric, asymm. distances → asymm. TSP

Solution:
• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of nodes:

• Length of TSP path: σ𝑖=1
𝑛−1 𝑑 𝑣𝑖, 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣𝑛, 𝑣1 + σ𝑖=1
𝑛−1 𝑑 𝑣𝑖, 𝑣𝑖+1

Goal:
• Minimize length of TSP path or TSP tour

15

𝑣1 𝑣2 𝑣3 𝑣4 𝑣𝑛−1 𝑣𝑛

Fabian Kuhn – Algorithm Theory

Example

16

3

13 4

9

1

10

32

33

3

3

8
2

20

2118

17

1

199

1

6 2
2

Greedy Algorithm

Length: 121

Optimal Tour

Length: 86

Fabian Kuhn – Algorithm Theory

Nearest Neighbor (Greedy)

• Nearest neighbor can be arbitrarily bad, even for TSP paths

17

1

1000

2 1

2

2

Fabian Kuhn – Algorithm Theory

TSP Variants

• Asymmetric TSP
• arbitrary non-negative distance function
• most general, nearest neighbor arbitrarily bad
• NP-hard to get within any bound of optimum

• Symmetric TSP
• arbitrary non-negative symmetric distance function
• nearest neighbor arbitrarily bad
• NP-hard to get within any bound of optimum

• Metric TSP
• distance function defines metric space: symmetric, non-negative,

triangle inequality: 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)
• possible to get close to optimum (we will later see how to get a factor Τ3 2)
• what about the nearest neighbor algorithm?

18

𝒖
𝒗

𝒘𝒙

Fabian Kuhn – Algorithm Theory

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:

19

1

2

3

4

5

6

7

9

8
10

11

12

1.3 1.12.1

0.8

1.9

4.0 2.1

1.31.23.4

3.1

1.7

Fabian Kuhn – Algorithm Theory

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost = 24

marked red edges : some arrow to it

green edges ≥ marked red ed.

#marked red edges:
At least half of the red edges are marked.

20

1

2

3

4

5

6

7

9

8
10

11

12

1.3

1.1

2.1

0.8

1.9

4.0

2.1

1.3

1.23.4

3.1

1.7

OPT part of greedy
solution (NN)

Fabian Kuhn – Algorithm Theory

Metric TSP, Nearest Neighbor

Triangle Inequality:

optimal tour on remaining nodes
≤

overall optimal tour

green ≥ marked red

marked red ≤ OPT

21

2.1

1.3

3.4

3.1

1.7 7

12

10

9
≤OPT

11

Fabian Kuhn – Algorithm Theory

Metric TSP, Nearest Neighbor

Analysis works in phases:
• In each phase, assign each optimal edge to some greedy edge

• Cost of greedy edge ≤ cost of optimal edge
• Each greedy edge gets assigned ≤ 2 optimal edges

• At least half of the greedy edges get assigned
• At end of phase:

Remove nodes for which greedy edge is assigned
Consider optimal solution for remaining points

• Triangle inequality: remaining opt. solution ≤ overall opt. sol.

• Cost of greedy edges assigned in each phase ≤ opt. cost
• Number of phases ≤ 𝐥𝐨𝐠𝟐 𝒏

• +1 for last greedy edge in tour

22Fabian Kuhn – Algorithm Theory

Metric TSP, Nearest Neighbor

• Assume:
NN: cost of greedy tour, OPT: cost of optimal tour

• We have shown:

NN
OPT ≤ 1 + log2 𝑛

NN ≤ 1 + log2 𝑛 ⋅ OPT

• Example of an approximation algorithm

• We will later see a Τ3 2-approximation algorithm for metric TSP

23

last red edge #phases

approximation ratio

Fabian Kuhn – Algorithm Theory

Back to Scheduling

• Given: 𝑛 requests / jobs with deadlines:

• Goal: schedule all jobs with minimum lateness 𝐿
• Schedule: 𝑠(𝑖), 𝑓(𝑖): start and finishing times of request 𝑖

Note: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖
• Lateness 𝐿𝑖 of request 𝑖 : 𝐿𝑖 ≔ max 0, 𝑓 𝑖 − 𝑑𝑖

• Lateness 𝐿 ≔ max 0, max
𝑖

𝑓 𝑖 − 𝑑𝑖 = max
𝑖

𝐿𝑖
• largest amount of time by which some job finishes late

• Many other natural objective functions possible…

24

0 1 2 3 4 5 76 8 9 10 11 12 13 14

length 𝑡1 = 10

𝑡3 = 3

𝑡4 = 5

𝑡2 = 7

deadline 𝑑1 = 11

𝑑2 = 10

𝑑3 = 13
𝑑4 = 7

Fabian Kuhn – Algorithm Theory

Greedy Algorithm?

Schedule jobs in order of increasing length?
• Ignores deadlines: seems too simplistic…
• E.g.:

Schedule by increasing slack time?
• Should be concerned about slack time: 𝑑𝑖 − 𝑡𝑖

25

𝑡1 = 10 deadline 𝑑1 = 10

⋯ 𝑑2 = 100𝑡2 = 2

𝑡2 = 2 𝑡1 = 10Schedule:

𝑡1 = 10 deadline 𝑑1 = 10

𝑑2 = 3𝑡2 = 2

𝑡2 = 2𝑡1 = 10Schedule:

Fabian Kuhn – Algorithm Theory

Greedy Algorithm

Schedule by earliest deadline?
• Schedule in increasing order of 𝑑𝑖
• Ignores lengths of jobs: too simplistic?

• Earliest deadline is optimal!

Algorithm:
• Assume jobs are reordered such that 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
• Start/finishing times:

• First job starts at time 𝑠 1 = 0
• Duration of job 𝑖 is 𝑡𝑖: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖
• No gaps between jobs: 𝑠 𝑖 + 1 = 𝑓 𝑖

(idle time: gaps in a schedule → alg. gives schedule with no idle time)

26Fabian Kuhn – Algorithm Theory

Example

Jobs ordered by deadline:

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

27

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡3 = 7

𝑡4 = 3

𝑡1 = 5

𝑡2 = 3

𝑑3 = 11

𝑑2 = 10

𝑑4 = 13

𝑑1 = 7

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡1 = 5 𝑡2 = 3 𝑡3 = 7 𝑡4 = 3

15 16 1817

Fabian Kuhn – Algorithm Theory

Basic Facts

1. There is an optimal schedule with no idle time
• Can just schedule jobs earlier…

2. Inversion: Job 𝑖 scheduled before job 𝑗 and 𝑑𝑖 > 𝑑𝑗
Schedules with no inversions have the same maximum lateness

28

deadline = 11 deadline = 13 deadline =20

maximum lateness of green jobs with deadline 13

𝟏𝟑

Fabian Kuhn – Algorithm Theory

Earliest Deadline is Optimal

Theorem:
There is an optimal schedule 𝒪 with no inversions and no idle time.

Proof:
• Consider some schedule 𝒪′ with no idle time
• If 𝒪′ has inversions, ∃ pair (𝑖, 𝑗), s.t. 𝑖 is scheduled immediately before 𝑗 and 𝑑𝑗 < 𝑑𝑖

• Claim: Swapping 𝑖 and 𝑗 gives a schedule with
1. Fewer inversions
2. Maximum lateness no larger than in 𝒪′

29

𝑖′ 𝑗′

𝑑𝑖′ > 𝑑𝑗′

𝑖 𝑗

𝑑𝑖 > 𝑑𝑗
increasing deadlines

Fabian Kuhn – Algorithm Theory

Earliest Deadline is Optimal

Claim: Swapping 𝑖 and 𝑗: maximum lateness no larger than in 𝒪′

30

𝑖

𝑑𝑗 𝑑𝑖

𝑗

Lateness 𝐿𝑗 = max 0, 𝑡 − 𝑑𝑗
𝑡

Max. lateness after swap:

𝐿𝑖′ = max 0, 𝑡 − 𝑑𝑖 ≤ 𝐿𝑗
𝐿𝑗′ = max 0, 𝐿𝑗 − 𝑡𝑖 ≤ 𝐿𝑗

𝑗

𝑖

Fabian Kuhn – Algorithm Theory

Exchange Argument

• General approach that often works to analyze greedy algorithms

• Start with any solution
• Define basic exchange step that allows to transform solution into a new solution that is not worse
• Show that exchange step move solution closer to the solution produced by the greedy algorithm
• Number of exchange steps to reach greedy solution should be finite…

31Fabian Kuhn – Algorithm Theory

