universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 2 : Greedy Algorithms 2 (Exchange Arguments, MST, Matroids)

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example

universität freiburg

Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T_K
 - Swap out edge not in Kruskal tree T_K , swap in edge in Kruskal tree T_K
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique
 - T : any spanning tree T_K : Kruskal tree

Assume that $T \neq T_K \implies \exists \underline{e} \in \underline{T} \setminus T_K$

f is the lightest edge connecting L and R

Kruskal tree

$$\Rightarrow f \in T_K \setminus T$$
$$\Rightarrow w(f) < w(e)$$

 $T' \coloneqq T \setminus \{e\} \cup \{f\}$ is a spanning tree of smaller total weight than T.

universitätfreiburg

Fabian Kuhn – Algorithm Theory

Matroids

Same as MST, but more abstract...

- E: finite set, called the ground set
 I: finite family of finite called independent sets
- (E, I) needs to satisfy 3 properties:
- Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **Hereditary property**: For all $A \subseteq E$ and all $A' \subseteq A$,

if $A \in I$, then also $A' \in I$

Augmentation / Independent set exchange property: 3. If $\underline{A}, B \in I$ and $|A| \ge |B|$, there exists $x \in \underline{A} \setminus \underline{B}$ such that $\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$

Simple example:

$$E := \{1, 2, 3, 4\}$$

$$I := \begin{cases} \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \\ \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \end{cases}$$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight $w(e) \ge 0$

• Recall that all independent sets in *I* consist of a finite set of elements of *E*.

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $x \in E \setminus S$ to S such that $S \cup \{x\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

S: greedy solution A : any other solution (indext) SEE, SEI $A \subseteq E$, $A \in I$	
151ZIAI: [S=151, a=1AI, sza] for contradiction, assume that [AI>15]: exch. prop: 3xEAS s.t. Suixs E] greedy would have added x	S'SS Suites oftes
$ \begin{split} & \omega(S) \geq \omega(A): \\ & for contradiction, assume & \omega(S) < \omega(A) \\ & S = \{x_1, x_2, \dots, x_s\} & \omega(x_1) \geq \omega(x_2) \geq \dots \geq \omega(x_s) \\ & A = \{y_1, y_{21}, \dots, y_d\} & \omega(y_1) \geq \omega(y_2) \geq \dots \geq \omega(y_d) \end{split} $	
$T(t) \implies \text{there is a smallest index } k \leq q : w(X_k) < w(Y_k)$ $S' = \{x_1, x_2,, x_{k-1}\}$ exch. prop: $\exists y \in A' \setminus S' \ s.t. \ S' \cup \{y\} \in I$	
$A' = \{y_1, y_2, \dots, y_k\}$ $\{A' = \{y_1, y_2, \dots, y_k\}$ $\{A' = \{y_1, y_2, \dots, y_k\}$ $\{A' = \{y_1, y_2, \dots, y_k\}$ $greedy considers y before x_k$ $greedy would add y$ $Greedy would add y$ $Greedy would add y$	9

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests $\rightarrow (E, \mathcal{F})$ is a matroid
- Greedy algorithm gives maximum weight forest
 - equivalent to MST problem

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E, \mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

universitätfreiburg

Forest Matroid of Graph G = (V, E)

Ground set: E (edges) **Independent sets:** \mathcal{F} (forests of G)

Basic properties: $\emptyset \in \mathcal{F}$ + hereditary property

• Empty graph has no cycles, removing edges doesn't create cycles

Independent set exchange property:

- Given $\underline{\mathcal{F}_1}, \underline{\mathcal{F}_2}$ s.t. $|\underline{\mathcal{F}_1}| \ge |\underline{\mathcal{F}_2}|$
 - $\exists e \in \mathcal{F}_1 \setminus \mathcal{F}_2 \text{ s.t. } \mathcal{F}_2 \cup \{e\} \text{ is a forest}$
- \mathcal{F}_1 needs to have an edge e connecting two components of \mathcal{F}_2
 - Because it can only have $|\mathcal{F}_2|$ edges connecting nodes inside components

universität freiburg