universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 2 : Greedy Algorithms 2 (Exchange Arguments, MST, Matroids)

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite…

Another Exchange Argument Example

- **Minimum spanning tree (MST)** problem
	- Classic graph-theoretic optimization problem
- **Given**: weighted graph
- **Goal**: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
	- Start with empty edge set
	- As long as we do not have a spanning tree: **add minimum weight edge that doesn't close a cycle**

Kruskal Algorithm: Example

universitätfreiburg

Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree (T_K)
	- Swap out edge not in Kruskal tree T_K , swap in edge in Kruskal tree T_K
	- Swapping does not increase total weight
- For simplicity, assume, weights are unique
	- T : any spanning tree T_K : Kruskal tree

Assume that $T \neq T_K \implies \exists \underline{e} \in T \setminus T_K$

 f is the lightest edge connecting L and R

Kruskal tree

$$
\Rightarrow f \in T_K \setminus T
$$

\n
$$
\Rightarrow w(f) < w(e)
$$

 $T' \coloneqq T \setminus \{e\} \cup \{f\}$ is a spanning tree of smaller total weight than T .

universitätfreiburg

Fabian Kuhn – Algorithm Theory

Matroids

• Same as MST, but more abstract…

Matroid: pair (E, I)

- E : finite set, called the ground set
- I: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**
- (E,I) needs to satisfy 3 properties:
- Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)

set system

2. Hereditary property: For all $A \subseteq E$ and all $A' \subseteq A$,

if $A \in I$, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and $|A| \geq |B|$, there exists $x \in A \setminus B$ such that $B' \coloneqq B \cup \{x\} \in I$

Simple example:
\n
$$
E := \{1, 2, 3, 4\}
$$
\n
$$
I := \begin{cases} \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \\ \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \end{cases}
$$

$$
A = \{2, 43, 8=3
$$

Example

- Fano matroid:
	- Smallest finite projective plane of order 2…

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight $w(e) \geq 0$

• Recall that all independent sets in I consist of a finite set of elements of E .

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $x \in E \setminus S$ to S such that $S \cup \{x\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

Matroids: Examples

Forests of a graph $G = (V, E)$ **:**

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E,\mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest
	- equivalent to MST problem

Bicircular matroid of a graph $G = (V, E)$:

- B : set of edges such that every connected subset has ≤ 1 cycle
- (E, B) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E : finite set of vectors, I : sets of lin. indep. vect.
- Fano matroid can be defined like that

universitätfreiburg

Forest Matroid of Graph $G = (V, E)$

Ground set: E (edges) **Independent sets:** $\mathcal F$ (forests of G)

Basic properties: $\emptyset \in \mathcal{F}$ + hereditary property

• Empty graph has no cycles, removing edges doesn't create cycles

Independent set exchange property:

- Given \mathcal{F}_1 , \mathcal{F}_2 s.t. $|\mathcal{F}_1| \geq |\mathcal{F}_2|$
	- $\exists e \in \mathcal{F}_1 \setminus \mathcal{F}_2$ s.t. $\mathcal{F}_2 \cup \{e\}$ is a forest
- \mathcal{F}_1 needs to have an edge *e* connecting two components of \mathcal{F}_2
	- Because it can only have $|\mathcal{F}_2|$ edges connecting nodes inside components

